Skip to main content
Download PDF
- Main
Turbulent Rivers
Abstract
The existence of solutions describing the turbulent flow in rivers is proven. The existence of an associated invariant measure describing the statistical properties of this one dimensional turbulence is established. The turbulent solutions are not smooth but H\"older continuous with exponent $3/4$. The scaling of the solutions' second structure (or width) function gives rise to Hack's law \cite{H57}; stating that the length of the main river, in mature river basins, scales with the area of the basin $l \sim A^{h}$, $h = 0.568$ being Hack's exponent.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%