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Abstract

The existence of solutions describing the turbulent flow in rivers is proven.
The existence of an associated invariant measure describing the statistical
properties of this one dimensional turbulence is established. The turbulent
solutions are not smooth butdttler continuous with exponent/8. The
scaling of the solutions’ second structure (or width) function gives rise to
Hack’s law [16]; stating that the length of the main river, in mature river
basins, scales with the area of the basin A", h = 0.568 being Hack’s
exponent.

1 Introduction

The flow of water in streams and rivers is a fascinating problem with many appli-
cation that has intrigued scientists and laymen for many centuries, see Levi [21].
Surprisingly it is still not completely understood even in one or two-dimensional
approximation of the full three-dimensional flow. Erosion by water seems to de-
termine the features of the surface of the earth, up to very large scales where the
influence of earthquakes and tectonics is felt, see [33, 34, 32, 6, 4, 36]. Thus wa-
ter flow and the subsequent erosion gives rise to the various scaling laws know for
river networks and river basins, see [12, 8, 9, 10, 11].

One of the best known scaling laws of river basins is Hack’s law [16] that
states that the area of the basin scales with the length of the main river to an expo-
nent that is called Hack’s exponent. Careful studies of Hack’s exponent, see [11]
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show that it actually has three ranges, depending on the age and size of the basin,
apart from very small and very large scales where it is close to one. The firstrange
corresponds to a spatial roughness coefficient of one half for small channelizing
(very young) landsurfaces. This has been explained, see [4] and [13], as Brow-
nian motion of water and sediment over the channelizing surface. The second
range with a roughness coefficient of 2/3 corresponds to the evolution of a young
surface forming a convex (geomorphically concave) surface, with young rivers,
that evolve by shock formation in the water flow. These shocks are called bores
(in front) and hydraulic jumps (in rear), see Welsh, Birnir and Bertozzi [36]. Be-
tween them sediment is deposited. Finally there is a third range with a roughness
coefficient 3/4. This range that is the largest by far and is associated with what
is called the mature landscape, or simply the landscape because it persists for a
long time, is what this paper is about. This range is associated with turbulent flow
in rivers and we will develop the statistical theory of turbulent flow in rivers that
leads to Hack’s exponent.

Starting with the three basic assumption on river networks: that the their struc-
ture is self-similar, that the individual streams are self-affine and the drainage
density is uniform, see [8], river networks possess several scalings laws that are
well documented, see [31]. These are self-affinity of single channels, which we
will call the meandering law, Hack’s law, Horton’s laws [17] and their refinement
Tokunaga'’s law, the law for the scaling of the probability of exceedance for basin
areas and stream lengths and Langbein’s law. The first two laws are expressed
in terms of the meandering exponent or fractal dimension of a river, and the
Hack’s exponenh. Horton’s laws are expressed in terms of Horton’s ratio’s of
link numbers and link lengths in a Strahler ordered river network, Tokunaga’s
law is expressed in term of the Tokunaga’s ratio’s, the probability of exceedance
is expressed by decay exponents and Langbein’s law is given by the Langbein’s
exponents, [8].

In a series of paper’s Dodds and Rothman [12, 8, 9, 10, 11] showed that all
the above ratios and exponents are determinethlaydh, the meandering and
Hack’s exponents, see [16], [12]. The origin of the meandering exponenstill
a mystery, but in this paper we show how Hack’s exponent is determined by the
scaling exponent of turbulent one-dimensional flow. Specifically, it is determined
by the scaling exponent of the second structure function, see [14], in the statistical
theory of the turbulent flow.

Two dimensionless numbers the Reynolds number and the Froude number are
used to characterize turbulent flow in rivers and streams. If we model the river as
an open channel witk parameterizing the downstream directigihe horizontal
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dept andJ is the mean velocity in the downstream direction, then the Reynolds

number
R— fturbulent _ U_y

fyiscous \Y
is the ratio of the turbulent and viscous forces whereas the Froude number

F— fturbulent _ U
fgravitational (QY)]'/ 2

is the ratio of the turbulent and gravitational forcess the viscosity ang is the
gravitational acceleration. Other forces such as surface tension, the centrifugal
force and the Coriolis force are insignificant in streams and rivers.

The Reynolds number indicates whether the flow is laminar or turbulent with
the transition to turbulence starting Rt= 500 and the flow usually being fully
turbulent alR = 2000. The Froude number measures whether gravity waves, with
speedc = (gy)l/ 2 in shallow water, caused by some disturbance in the flow, can
overcome the flow velocity and travel upstream. Such flows are called tranquil
flows, ¢ > U, in distinction to rapid or shooting flows,< U, where this cannot
happen; they correspond to the Froude numbers

1. F <1, subcriticalc > U
2. F =1, critical,c=U
3. F > 1, supercriticalc < U

Now for streams and rivers the Reynolds number is typically |&ge10° —
10°, whereas the Froude numbers is small typic@ly= 101 — 102, see [19].

Thus the flows are highly turbulent and ought to be tranquil but this is not the
whole story as we will now explain.

In practice streams and rivers have varied boundaries which are topologically
equivalent to a half-pipe. These boundaries are rough and resist the flow and this
had lead to formulas involving channel resistance. The most popular of these are
Chézy’s law

V = ucCr¥/2sy/?, u. = 0.552m/s

and Manning’s law
1
V= umﬁrz/g’s%/z, Um = 1.0m/s



wheres, is the slope of the channel amds the hydraulic radiusC is called
Chézy’s constant and measures inverse channel resistaic®Manning’s rough-

ness coefficient, see [19]. We get new effective Reynolds and Froude numbers
with these new averaged velocitiés

g g \?
R=_> R F‘'=(—->_) F
3uic? (ungso)

It turns out that in real rivers the effective Froude number is approximately one
and the effective Reynolds number is also one, wRen500 for typical channel
roughnes€ = 73.3. Thus the transition to turbulence typically occurs in rivers
when the effective turbulent forces are equal to the viscous forces.

In this paper we will ignore the boundaries of the river. The point is that
in a straight segment of a reasonably deep and wide river the boundaries do not
influence the details of the river current in the center, except as a source of flow
disturbances. We will simply assume that these disturbances exist, in the flow
in the center of the river and not be concerned with how they got there. For
theoretical purposes we will conduct a thought experiment where we start with an
unstable uniform flow and then put the disturbances in as small white noise. Then
the mathematical problem is to determine the statistical theory of the resulting
turbulent flow.

The details of the flow close to the boundary are obviously important and
give rise to the Prantl-von Karman universal velocity distribution law for smooth
boundaries and the @hy’s and Manning’s roughness coefficients for rough bound-
aries. However, these properties of the flow at the boundaries are a separate prob-
lem that will not be addressed in this paper.

The outline of the paper is as follow. In Section 2 we pose the problem. It turns
out to be a stochastic initial value problem. In Section 3 we derive a priori esti-
mates necessary for the existence theory and pose the one-dimensional problem
solved in this paper. The existence of unique solutions that aleegrcontinuous
stochastic processes, wittolder exponent 3/4, is proven in Section 4. The global
existence is based on a useful estimate of these solutions is derived in Subsec-
tion 4.1. The existence of a unique invariant measure on the $3&té), where
the solutions reside, is proven in Section 5, following McKean [23] and Da Prato
and Zabczyk [30]. The scaling of the second structure function (3/2) is found in
Section 6 and the derivation of Hack’s law recalled from [6] and [4].



2 The Initial Value Problem
Consider the Navier-Stokes equation

Q) w+w-Ow = vAw—+[p
w(x,0) = wq

wherev is the kinematic viscosity, with the incompressibility conditions
O-w=0 2)
Eliminating the pressurp using (2) gives the equation
W 4w - Ow = vAw -+ O{A Y [trace(Ow)?]} (3)

We want to consider turbulent flow in the center of a wide and deep river and to do
that we consider the flow to be in a box and impose periodic boundary conditions
on the box. Since we are mostly interested in what happens in the direction along
the river we take oux axis to be in that direction.
We will assume that the river flows fast and pick an initial condition of the
form
w(0) = Uoer (4)

whereU, is a large constant angl is a unit vector in thex direction. Clearly

this initial condition is not sufficient because the fast flow will be unstable and
the white noise ubiquitous in nature will grow into small velocity and pressure
oscillations, see for example [1]. But we perform a thought experiment where
white noise is introduced into the fast flowtat 0. This experiment may be hard

to perform in nature but it is easily done numerically. It means that we should
look for a solution of the form

W(x,t) = Uoer + u(x;t) (5)

whereu(x,t) is smaller thatJ, but not necessarily small. However, in a small
initial interval [0,t,] uis small and satisfies the equation (3) linearized about the
fast flowUq

(6) U +UgOu = VAu+f
uix0) = 0



driven by the noise
f= ; h%dpkex
KZ0

Theeg = 2™ are (three-dimensional) Fourier components and each comes with
its own independent Brownian moti@f. None of the coefficients of the vectors

h&/z = (hi/z, h%/27h§/2) vanish because the instabilities are seeded by truly white
noise (white both is space and in timd)is not white in space because the coef-
ficientsh&/2 must have some decay kso that the noise term in (6) makes sense.
However to determine the decay of thgzs will now be part of the problem.

The form of the noise expresses the fact that in turbulent flow there is a contin-
uous sources of small white noise that grows and saturates into turbulent noise

that drives the fluid flow. The decay of the coef“ficiehié2 expresses the spatial
coloring of this larger noise in turbulent flow.

The justification for considering the initial value problem (6) is that for a short
time interval[0,t,] we can ignore the nonlinear terms

—u-Ou+ O{A L trace(Ou)?]}

in the equation (3). But this is only true for a short titgeafter this time we have
to start with the solution of (6)

t .
() = 5 1 [ (P TII S ™
k=0

as the first iterate in the integral equation
t
u(x,t) = Up(x,t)+ [ K(t—s)[—u-Ou+ DA L(trace(Cu)?)lds  (8)
to

whereK is the (oscillatory heat) kernal in (7). In other words to get the turbulent
solution we must take the solution of the linear equation (6) and use it as the first
term in (8). It will also be the first guess in Picard iteration. The solution of (6)
can be written in the form

Uo(x,t) = éo hy/2Afed(x)

where the .
A= /0 e—(4n2vk2+2TliU0k)(t—s)dBI§ )

6



are independent Orstein-Uhlenbeck processes with mean zero, see for example
[30].

Now it is easy to see that the solution of the integral equation((8}) satis-
fies the driven Navier-Stokes equation

k
o Ua = wpu- D 0870w + 3 G
k#£0

(10)
ux,0) = uw(x),

and the above argument is the justification for studying the initial value problem
(20). We will do so from here on. The solutiorof (10) still satisfies the periodic
boundary conditions and the incompressibility condition

O-u=0 (11)

The mean of the solution, of the linear equation (6) is zero by the formula (7)
and this implies that the solutianof (10) also has mean zero

0(t) = /Tg u(x,t)dx =0, (12)

c

if the initial data also has mean zem®= 0.

If we take the initial data equal to zero in (10) then the undrifea O linear
problem (6) is stable and one may have to wait a while until the driving in (10)
destabilizes the initial condition® = 0, corresponding to the uniform flow solu-
tion (6) of the Navier-Stokes Equation (3). However, in turbulent flow the uniform
flow is immediately destabilized due to large fluctuations, see [2] for a discussion
of this mechanism.

3 A Priori Estimates

In this section we will explain the probabilistic setting and prove the a priori esti-
mates necessary for the existence proof. The problem to be solved will be also be
posed.

We let (Q, 7,P), Q is a set (of events) and a o algebra onQ, denote a
probability space with the probability measure of Brownian motion afda fil-
tration generated by all the Brownian motidison [t, «). We denote byl/[0, T]
the space having the following properties, see Oksendal [27].
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Definition 3.1 /[0, T] is the space of functions satisfying the conditions:

1. f(w,t): QxRT — R is measurable with respect t6 x B whereB is the
o-algebra of the Borel sets df,«), we Q,

2. f(w,t) is adapted to the filtratior,

3,
E(/OT £2(e,t)dt) < oo,

We denote byi[0, T] the space of functions, who#é™P) Sobolev norm|u|| (mp)(,1)
liesine [0, T] and we IetL(Zm 0 denote the space of functionswi™P) whose
Sobolev norm lies i.?(Q,P). The norm in the spacnéfm o) IS

[EdulZng)]

In particular forp = 2, we get the norm

JulZ; | =E(l(2—8%"™2uf)

Here E denotes the expectation f(Q,P) and| - |, denotes thé?(T®) norm.
We will proved the existence of solutions in the subspace of continuous functions
C([O,T];L(zm ») in WO, T].
Let (-,-) denote the inner product ic?(T3) The following a priori estimates
provide the foundation of the probabilistic version of Leray’s theory.
Lemma 3.1 The L2 norms|u|2(w,t) and |Ou|2(w,t) satisfy the identity
d|ul + 2v|Oul2dt = 2 ; (u,h e dpk + ; hedt (13)
K70 K70

and the bounds
t
14)  JuB(w.t) < juB(0)e M +2 > || &M e
KZ0

l1—e 2VA1t

- Sh
o K

KZ0
t 1 1 t 1/2 Kk
15/Du2w,sds<—u20+— /u,h dBf+— S h
(15) 0| [2(c0,s)ds< = |uf3(0) ngoo< k&) dBs ZVKZOk
8



wherel; is the smallest eigenvalue efA with vanishing boundary conditions on
the box[0, 1)3 and hx = |h,f/ 2|2. The expectations of these norms are also bounded

1 e—ZV)\lt

(16) SUBI0) < E(uEO)E ™+ T 5
a7 &) OuEeds < %Eﬂu@(on%gohk

Proof: The identity (13) follows from Leray’s theory and Ito’s Lemma. We apply
Ito’s Lemma to thd_2 norm ofu squared,

d/ u[2dx= 2/ i udxdt+2§/ u. hl/ZededBtM;hk/Tsdxdt (18)
k40

1/2

wherek € 73 andh/ " € RR3. Now by use of the Navier-Stokes equation (3)

djul® = 2/3VAU, U+ (—u- Du+0A~*(trace(0u)?) - udx
T

12 ; / - Zedxdpl + ; hidt
k£0

— _ov|0ul2dt 42 ;/ u- hy 2edxdt + 3 hidt
KZo

since the divergent-free vectois orthogonal both to the gradiein—(trace(Ou)?)
andu- [u by the divergence theorem. The first term in the last expression is ob-
tained by integration by parts. This is the identity (13). The inequality (14) is
obtained by applying Poincas inequality

A1jul3 < |Oul3 (19)

whereA1 is the smallest eigenvalue efA with vanishing boundary conditions on
the cubg0, 1]°. By Poincaé’s inequality

d|ul3 + 2vA1|u|3dt < d|ul3 + 2v|Oul3dt

—2; u,h %) dBl + ; hedt
k=£0
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Solving the inequality gives (14). (15) is obtained by integrating (13)
ul3(t) +2v/ Du2(s)ds= [u]2(0) +2;/ (u,h e, >d[3§+t;hk
KZ0

and droppingul3(t) > 0
Finally we take the expectations of (14) and (15) to obtain respectively (16)

and (17), using that the functiofu, h&/zeK)(oo,t) is adapted to the filtratiorf;.
QED

3.1 The Model of River Flow

In a deep and wide river it is reasonable to think that the directions transverse to
the main flowy the direction across the river, aadhe horizontal direction, play

a secondary role in the generation of turbulence. As a first approximation to the
flow in the center of a deep and wide, fast-flowing river we will now drop these
directions. Of coursg andz play a role in the motion of the large eddies in the
river but their motion is relatively slow compared to the smaller scale turbulence.
Thus our initial value problem (10) becomes

U+ Uolx = Uxx— UL+ 05 b+ ; hl/zd[3t
(20)
u(x,0) = ul(x)
where the constant L
b [0 (u2x (21)

keeps the mean af equal to zero. The problem we pose it to find a Sobolev

space determining the decay of the (turbulent) noise coeffidiéﬁztso that there
exists a unique solution of (20) in this space. This solution will necessarily be a
stochastic process and we want to determine the statistical theory associated with
this stochastic process.

We still have periodic boundary condition on the unit interval but the incom-
pressibility condition can be dropped. Recall from Equation (12) that the mean
u is still zero. This equation now describes the turbulent flow in the center of a
relatively straight section of a fast river. The full three-dimensional pressure term
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is modeled by the pressure variations in the downstream directions only. This is a
model
Op = 0, H((ug)?) —b
of the pressure gradient in the river flow. The full three-dimensional flow will be
treated in a subsequent publication [3].
The one-dimensional version of Lemma 3.1 is

Corollary 3.1 In one dimension thednorms of u and wsatisfy
@) D < O 425 [ e 29w Zaga

—2VAqt
1 1-e"" ;hk
23) / U3 (00, 5)ds < —|u|2 4= ;/ (u,h2e) st+—§hk

where); is the smallest eigenvalue efd2 with vanishing boundary conditions
on the interval0, 1]. The expectations of these norms are also bounded

1 e 2VA1t

(24) E(uB)t) < E(ul3(0)e 2™ + ;hk

@) ([ wBey < %Eﬂu@(onwk;ohk

4 Existence of Turbulent Solutions

In this section we prove the existence of the turbulent solutions of the initial value
problem (20). The following theorem states the existence of turbulent solutions
in one dimension. First we write the initial value problem (20) as an integral

equation

u(x,t) = Uo(X,t) + K (t) uo+/0t K(t—s) * [—%(uz)ﬁa;l(ux)z) —blds (26)
HereK is the oscillatory heat kernal (7) in one dimension and
(k) = 3 /> Alfe(x)
KZ0
the Afs being the Orstein-Uhlenbeck processes from Equation (9).
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4.1 An Estimate of the Turbulent Solution

The mechanism of the turbulence production are fast oscillations driving large
turbulent noise, that was initially seeded by small white noise. These fast oscilla-
tions are generated by the fast constant flig\and their velocity increases with

Uo. The biggeiJ, is the more efficient this mechanism becomes. The following
lemma plays a key role in the proof of the useful estimate of the turbulent solution.
Itis a version of the Riemann-Lebesgue Lemma which captures the averaging ef-
fect (mixing) of the oscillations.

Lemma 4.1 Let the Fourier transform in time be
T .
W= / w(s)e 2kUosgg
0

where w andw are vectors with three components, periodic with periog=T
k—{jo, ne Z, then

W = ow (27)

where

andodw satisfies the estimate

ow| <

ow
4|kU0|eSS sug%mﬂgy (28)

Proof: The proof is similar to the proof of the Riemann-Lebesgue lemma for the
Fourier transform in time

T .
W(k) = / w(s)e 2MkUosqg
0
T .
=— w(s)e*ZT"kUO(S*ﬁ)ds
0
T 1 .
_ —211kUoS
= /0 w(s+ 2kU0)e ds
Taking the average of the first and the last expression we get
Y 1 T 1 —2T|]kUQS =N
W— E/0 (W(S) WS+ ) ds=ow

12



Now

|ow| = 1-|(W(S) —W(s+

/ Uo 0W
2
ow

4|kuoy ©ss S”Bﬁz\kto|]|£|

2ka))I

IN

IN

QED

The lemma allows us to estimate the Fourier transfornt)(iof w in terms of
the time derivative ofv, with a gain of(kU,) ~1. The next lemma gives a similar
estimate withw multiplied by the oscillatory exponential.

Lemma 4.2

G(WQ 21ikUo (T — r)>
—21ikUo (T —9)
|/ we Jdt| < 2/kUs ’/ €SS SUR(ss; 1 | | PR |ds

(29)

Proof: We take the complex conjugate of the equality (27) in Lemma 4.1 and
multiplying by e=2KYT to get the equality

—2TI]kU0T Sde_ —2Tl]ka(T S)
/ we ds— 2/ /S+ al’ ds

2kU
This is equivalent to the equality

T s .
/ (W T[ika/ a—Wdr)e‘zr“"UO(T‘s)ds:
0 s+t OF

/ / awe—ZTuka(T ) e2T|1kU0T r)dre—ZTuka(T s)dS
2 SJr2|<u or

Now

e 72Tu'kU0(T7(S+k%JO))

/ S OWomikUy(T—9) — w(s)eZUe(T=9) | yy(st

, s gw(r)e 2mkUo(T-r)
— 2w(s)e 2kUo(T—s) | s () = dr
2kUo

13



Substituting into the formula above we obtain the identity

T .
(1 + 2T[ika)/ we 2KUo(T-9)gg
0

2 or

2kUo

T s —2rikUo(T 1) _
— }/0 /S+ ) owe (21ikU, + €™ Yo(SM)dr ds

Then taking the absolute value and applying the triangle inequality we get

T .
(L + 4rUR| [ we TUT g
0

(1+ 2kU,)|)

a(WefZTu'ka(Tfr))

T
< A = TEY
< 4kUo) /o ess supe[sﬁﬁ” PR

Dividing the last inequality by1+4r2k2U2)Z and using the inequalitja+b)2 <

2(a® +b?) gives the result.
We will also need the following technical lemma.
Lemma 4.3 The integral
/t (2T[|k|) pe—(4T[2vk2+2Tu'ka)(t—s)dS
0
is bounded by
b P ATVt 1-P
(2T[)'°/ Ik|Pe4PVR(-9gs < C 18
0

for 0 < p < 2, where C is a constant. In particular,

/t (2n|k|)pe—(4ﬂ2vk2+2nikuo)(t—s) ds< C & %
t—5

and s
/ B (2m] k|)Ioe—(4n2v|<2+2rrikuo)(t—s)dSS c5l-5
0

Proof: We estimate the integral
t t
/ |K|Pe4TVKA =9 gg — / |K|Pe4TPVkr g
0 0

p .p _p/t _p 1P
< —
_(Snzv)ze 0r 2dr=Ct 2,

14
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where

_1/p

—2m\ 2vr
is the value ofk where the integrand achieves its maximum. The second esti-
mate (32) is obtained by first integrating and then computing the maximum of
|k|pef4n2vk26_ QED

If % is a rational number Ieg+ denote any real numbsr> %.

Theorem 4.1 If the velocity | of the uniform flow is sufficiently large and the
initial function w(x,t) and the initial condition B(x) in the integral equation (26)
satisfy

E(lwol?) + E(IK=u2)

1 o (14 (2mk))®27) 02
(33) =z he + E(|K*u
24y (21K (K tFlige)
1 1
< — R

then solution of the integral equation (26) is uniformely boundedc(?gu 2"
4 >

Namely,
€SS SUR. 0. E(Jull5) (1) < ClUol. (34)

where C is a constant and K is the oscillating heat kernal from (7).

Corollary 4.1 Onsager’s ConjectureThe solutions of the integral equation (26)
are Holder continuous with expone8f4.

Remark 4.1 The hypothesis (33) is the answer to the question we posed in Sec-

tion 2 and Subsection 3.1, namely how fast the coefficida[yt% had to decay
in Fourier space. They have to decay sufficiently fast for the expectation of the

Hi = WG 2 Sobolev norm of the initial function, to be finite. In other

words theLz5+ ) norm of the initial functioruy has to be finite.
4 >

We now prove the theorem with the help of one more lemma in addition to those
above.
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Proof: We write the integral equation (26) in the form
1t _ —— _—
=3 I PA 5 [ e (P09 25,1 uy)2 — 5,08 (k ) dfex()
KZ0

whereg, = e are the Fourier components and ffeare the Ornstein-Uhlenbeck
processes (9). We have used that the constamt(26) keeps thdé = O Fourier
coefficient ofu equal to zero and omit the initial conditions to begin with. It will
be added in the last step of the estimates.

By the orthogonality of theys theL? norm ofu is

—

1 t . —_—
|u|%: Z[hk‘A‘k|2+Z|/o ef(4n2vk2+2mka)(t—s)(Zagl(ux)z_aXUZ)(k’S)dqz]
k£0

We split thet integral into the integral from 0 to— o, whered is a small
number, and the integral from- d tot. This is done to first avoid the singularities
of the spatial derivatives of the heat kernalsat t and then to deal with these
singularities in the latter integral. First we estimate the integral frend to t.
TheL? norm of this integral is

J1 [ e 9 (53,2 5,8 (k 9as?
o Ji-

and it is estimated by

< 3%ess sup_5y ;4I6x K) + ; |0tk [5(K)

< & ess SUR_5.(410x () — bl + |un3)

< Cd% ess sup_a-,’t](\uX!ﬁJr |ulz |ux|3)

(35) < C ess SUR_, (|3 + |ux|3)
by Plancherel’s identity and since by the Gagliardo-Nirenberg inequalities

Ul < Clully+ < Clulz,

in the spacé.? with mean zero, wher&is independent dfl, andC is a constant.
The integral from O ta — o

§_| / o (4P 21ikUo) (-9) (29, 1(13)2 — 5,02) (k, 5)d 2

16



is estimated by use of Lemmas 4.1, 4.2 and 4.3. First consider

t-5 i "
; /0 g (4TPVI+2mtkUo) (t=5) 512k 5)dls2
k#0
-3
) ; | /t & (4TI 211kU0)1-9) i 1 1 (il
KZo /O

We write

e (2NkUo)(T-9)g, g — e—<2T“kU°><T‘S>7; atk—ha()
1£k,0

_ ; e (2i(k=hUo) (T=9) G _ | )= (2Uo)(T=9)5(|)
1#£k,0

21ikUo) (T —9) 21ikUo ) (T —5)

= l’jei( * Oei(

Then Fourier transforming the Navier-Stokes equation and multiplying it with an
exponential gives
a(e—(zmkuo)(T—s)O)
0s
(36) B % oe (2kU)(T=9) | a;/l(\lj)()ze—(ZT[ika)(T—s)

— _4rPukPe (ZikUOI(T-)

We are now ready to apply the main estimate (29) in Lemma 4.2. By use of
Lemma 4.2 we get that

(37) f(t)—é Tike— (4m°Vk?+21ikUo) (t—8) i & (ids

1 (4mvk2+-2mikUo) (t—s) Ox0)
| 0s |d S

C =0
< K] Jo “Tikless sugsﬁlwo}

Now
3 e (4TPVk2+2mikUo ) (t—S) a)

= — ATRyk2e (4TPVK*-21ikUo) (t-9) 5 4. 1

~ o 27ikUo) (t—S)
+2e (e e :
ds

4T12vk2)(tfs)< 2mikUo)(1-5)
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By using the Fourier transform of the Navier-Stokes equation (36) we get that

fé*5 Tike— (4Pvk*+21ikUo) (t—9) (j x (ids
< U_TE 3_5ess SUBHA (Vk2|e—(4T[2vk2+2Trika)(t—s)O*0’
_ 2\ (_ (G —21ikUp) (t—s)
+2le (4TVK?) (t s)(ue 21ikUo) (t— s))>,< (Ge . )|)dS
t—5 2| a— (4TPVK?+-211kUo) (t—9) (3 4 [}
<o Jo “ess sug%ﬁ](mzvk e (4T VkE+2mikUo) (t=5) () 4 |
+2’e—(4n2vk2)(t—s)a* (_4T[2Vk20e—(2Tlika)(T—s)
— 1ge (2KUO)(T—) | 7L (1) 26 (2TKU)(T=9)) )l
Now we square the last expression above and sumtimen using the Plancherel
identity we get that

Zk;«é0|f 8 ke~ (4mPVk?-+21ikUo) (t — S0+ (dg?
<Zk¢o\12“3\' ft 8 o~ 4TPVK (t— s|u2’( K)ds
2n2 ft 6“(‘ —4TPVK? (t—9) |u3\( k)ds
+0; é L e 49 (12| (K 2
= 7SS sup_g)([ul + [ulZ[ulf + [ulZ|uxlZ)
— U%ess SUR_ g (14 |ulZ) (|ulZ + ux[2)
where we have used Lemma 4.3 to estimate the integrals and puilethe sup

norm, out of the (last two).2 norms in the last step. This finally produces the
inequality

; / Tk (4TCVk?+2rikUo) (t— s)u*udqz<ugess suRy g ((1+|ulg) (Juld+ uxl2))
(o]

(38)
Secondly consider the term

/\

;l / o (4TI +-21ikUo ) (t-9) 9 - L(ux)2(k,s)ds?

_ o (4TPVK2-+21ikUo) (t— g b Ox o
; / Tik ds

18



We write

e (2kUo)(T-9)q (g, — g (2mkUo)(T—s) ; Gy (K— 1) 0y (1)
17K,0

_ 7; e—(ZTd(k—I)Uo)(T—S)OX(k_|)e—(2T[iIUo)(T—s)0X(|>
1£K,0

(21ikUo ) (T —5) (21ikUo ) (T —s)

— Uxe * Uxe

Fourier transforming th& derivative of the Navier-Stokes equation and multiply-
ing it with an exponential gives

a(e—(ZTu'ka)(T —s) Gy)
0s
(39) +2Tt2k2uA2e*(2T"kU°)(T*S)+2nik 6;1( Uy) 26~ (21ikU,) (T —s)

_ —4T[2V kZU‘Xe— (21kUo)(T —9)

Then we apply the main estimate (29) in Lemma 4.2. By use of Lemma 4.2
we get that

(40) f(t)fé ef(4n2vk2+2ru'kuo)(t—3) ax*ax ds
-3 (4T[2vk +2Tuka)(t 9 (et
Now
a(e—(4n2vk2+2nikuo)(t—s)ax*OX) o ik
9s — AmRyk2e (4TVKki+2mkUo)(t-s) g 4 g
| 0g~ (4TPVK)(t-s) (e TR (1-9)) 3 (O 2kUo(t-9))

0s
By using the Fourier transform of the Navier-Stokes equation (39) we get that

8 8 o (41Pvk?+21ikUs) (t—3) uX*Gde

< gy o Cbess supg. 1 (APuiCle P S
—1-2\6_ (4TRVK2 )(t—S)(u e—2TI]kU0)(t—s)) . %‘:Mts)])ds
Smlo é %ess SURs; .2 (4Tt2v\e (41Pvk2+-211kUo) (t— S\ « Gy
42| (4rvi*) (t— S)u + (—4TRvyge (2kUo)(T-9)

_ZT[Zl]\Ze*(ZTﬁka)(T*S) 2rukax (UX)Ze (2mikUo) (T — S))Dds
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Now we square the last expression above and sumtimen using the Plancherel
identity we get that

Sk 7&0| ft—é — (4T2Vk24-211KU,) (t—S) GX*Oquz
<Zk7é0| |ft O ATVt S)I( ) |(k)ds
21 (t=3 —ATPVK(t—5) | 5 /6’\ 211 (K1d g2
+G,Jo € |0x L[uxdx L(uy)?]|(k)ds

= Sess SU,_g (U4 + U (Iu3lui3 + [ul3))
— U%ess SUR—g(1+ [U[2) (JulZ + [uxlZ) uxl3

where we have used Lemma 4.3 to estimate the integrals, puiheithe sup norm
out of the (last two).? norms in the last step and integrated by parts to get

0 H{udy H(u)?] = 03 Hu(u)?]
This finally produces the inequality

; / o (4mPVK2 - 2mikUo) (t s)Ux*Uqu2<%ess SURy g (14 [ulZ) (Julz+|ux?) luxl3)

Tk E
(41)
Combining the estimates (38) and (41) give tReestimate
uz <9 ; i A% + Uy |zess SUR. (o, (14 [|ul[%- )HUH‘%
(42) +8%Cess sug.(o.||ull 2+
4
by use of Sobolev’s inequality
U < Clulls- (43)

and the Gagliardo-Nirenberg inequalities.
.
We now act on the integral equation with the oper@fB/rA') , to estimate the
+
derivative6>(<5/ "
A uxt) = Z[(Zﬂ]k) (5/4)" pl/2 e

n ; /0 (2nik)5/4)" e — (4TRVK2+-27ikUq ) (t— ) (205 ()2 — a/x\tﬂ)(k,s)ds]a((x)
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whereg, = €™ are the Fourier components and eare the Ornstein-Uhlenbeck
processes (9).
By the orthogonality of theys theL? norm ofu is

54
oY u = ;[<2n|k\><5/2>*hkwrz
k#£0

—

t . _—

@4) 5] [ (k)& e (RIS (20,3 (102 - 0,02) (k 9]
0

First we estimate the integral from- 3 tot. TheL? norm of this integral is

t /\ —
Z%lt (2rik) (/4" (4TPUK 20K () (205 142 — 0,02) (k. )l
k

and it is estimated by

—

<80 ess sup (5 4w 500 + 3 ()
kZ0 k70

(45) <C3¥Y ess sup_ 5 (Juxlz+[ux[3)

by Plancherel’s identity, the Gagliardo-Nirenberg inequalities and Lemma 4.3.
The integral from O ta — o

t—0 : — —
; 41-1|/ (2T[jk)(5/4)+e—(4T[2Vk2+2T|]kU0)(t—s)(Za;l(ux)z —6xu2)(k, S)dgz
0

C
(46) < 52658 SUR-g)(|Uxla+ Ul (ulZ + [uc[2) [ul2)
[0}

is estimated by similar computations as above. We need to work a little harder than
above to get rid of th&? terms stemming from the Laplacian in the Navier-Stokes
equation. Combining the two estimates (45) and (46) we get

(5/4)t C
05 UI2<9§ (2rik|) /2" hy | A2 + €SS SUR- o (14 [|ull3+ )HUII‘§+

|Uo|?
(47) +8(3/9" Cess sup oy, HuH“;1+

by Sobolev’s inequality (43) and the Gagliardo-Nirenberg inequalities.
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Now we combine the inequalities (42) and (47) to get

C
HuH <9; (1+ (2mk|) /2 Yy A2+ — esssu&oﬂ(lﬂ\uH )Huu‘%+

Uol?
(48) +83/9 Cess sup. oy HuH%+

and finally adding the term with the the initial conditiohto the integral equation
(26) we get the estimate

HU||§+ < 16;(1+(2n|k|>(5/2)+)hk|Atk|2+16HK*UOH§+
k#£0

C _
49) + Us |2ess SUR- oy (1+|ull? )||UH%++5(3/4) Cess SUE&[O,t]”“H?
Thus by Lemma 4.4,
E 2,y < Vol 50
(ess supy ) < & (50)
if
(1+ (2rdK|) /2" )hy 02 2|Uo|
16; 8r2K2 +16E(||K*u ||%+)§3\/6—1
by makingd arbitrarily small. We se% equal to a new consta@tand conclude
that (33) imples (34). QED

Lemma 4.4 Consider the inequality
x(t) — (03(t) +eR(t) <atd, x(0) =,
where Ed) = 0and b> 0, ¢ > 0 are deterministic. If

2 c2 c
142 _
31+ gp)max— g

E(a) <
where Ynax= 55(1/ 32 +1— 1) and E(X(0)) < Xmax then EX(t)) < Xmax

Proof: f(x) = x— bx2 — cx? obtains its maximum atmax, thus ifE(a) = E(a+
d) < %(1+ %)Xmax— % = f(Xmax), E(X(t)) must stay below the valugnax where
f(x) obtains its maximum, assuming tHagx(0)) < Xmax. QED
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Remark 4.2 Corollary 4.1 is the resolution of a famous question in turbuleixe:
turbulence always caused by the blow-up of the velocityfai@answer according

to Theorem 4.2 iso; the solutions are not singular. However, they are not smooth
either, contrary to the belief, stemming from Leray’s theory [20], that if solutions
are not singular then they are smooth. By Corollary 4.1 the solutions @deH
continuous with exponent/B in three dimensions. This confirms a conjecture
made by Onsager [28] in 1945. In particular the gradégotis not continuous in
general.

We can now prove that ess suj,.)|/u(t) 12, is bounded with probability one.
1

Lemma 4.5 For all € > 0there exists an R such that,

P(ess sup o) lU)]|3: <R)>1—¢ (51)
i

Proof: By Chebychev’s inequality and the estimate (34) we get that

ClU
P(ess Sup. g, |U(t) ]2+ > R) < % =€
4

for R sufficiently large. QED

4.2 Existence of Global Turbulent Solutions

In this section we prove the existence of the turbulent solutions of the initial value
problem (20). The following theorem states the existence of turbulent solutions in
one dimension.

Theorem 4.2 If
E(luwollg) + E(K*l3)

1 < (1+ (2mk])®/27) 0112
(52) == he + E(|Kx*u
25 (2mk])? ( ”%+)
1 1
< — - —
< 24C|Uo’ 16

where the uniform flow yJis sufficiently large so that the a priori bound (34)
holds, then the integral equation (26) has unique global solutipgtyiin the
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space ¢[0,); L2, ), uis adapted to the filtration generated by the stochastic
process 42

Uo(X,t) = ; hli/zAtkek
k#£0

and
/ ||u\| .dg) < C|Uo|t (53)

Proof: We letw =u—vanda = u+ v whereu andv are two solutions of the
integral equation. We start by writing

w(xt) = — ;[ / o (VTR 20 9 (7 G+ T — ) (K, 9 dg ()
KZo 70

whereg, = €% Then by Lemma 4.3

|W‘2 §|/ 4VT[2k2+2Tuka)(t s)(WGX+GWX (;;(-uk)()(KS)dqz

<Ctess SU@Vt](|W|oo|aX|2+ |0(|w|wx|2+ |0t 4 W[ )
<Ct?esssupy |]a\|%+ HM\%

Similarly

? ' 5T (AvTRK2+2mikUo) (t—9) — 2
|0x W Z| A (2rik])4 0 (Way + awy) (k, s)ds
KF0

.
<Cts esssupyllals: |ws:
4 4
by Lemma 4.3. Combining those two estimates we get that
.
ess supy W' 2, <Cts esssupya”|s-ess supy w3 (54)
4 4 : 4

for the iteration based on the integral equation (26), tasiall. Now the expec-
tation ofHO(”Hg+ HW“H§+ can be taken to bounded by a constant, independeamt of

1 1
This implies that th¢|0(”|]g+||vv”|]g+ norms are bounded with probability one, by
an argument similar to tﬁat in Lémma 4.5. Thus

E(ess sup[w™H2,) <Cth Elesssupy|w'2.),  (55)
3 3
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with probability one, but a consta@tthat depends on functions in the set

(a3 W) <K

in L(ZS+ )
4 >
there exists a random variabtetaking its values almost surely in the interval
(0,t], with t small, such that the integral equation (26) defines a contraction on

C([0,1]; L(2§+ 2)). This proves the local existence of unique solutions to (26). The

. By an application of the contraction mapping principle we get that

global exiétence uses the bound (34) in Theorem 4.1, that does not depend on the
above set mL(Z5+ 2" Namely, since the norm afin L(25+ ) is bounded a priori

for allt, the mterval of local existence can be extended to the whole posaixis
R, QED

Next we prove an estimate analogous to a Gronwall estimate that will be used
in later sections and also gives an alternative method to prove the uniqueness of
the solutions.

Lemma 4.6 Let u; and wp be two solutions of (26) with initial function§ (x,t) =
Y kzo(ht)Y2Afec and B(x,t) = Yi.o(h2)Y2Afe,, and initial conditions §(x) and
u9(x), then with probability one,

1=\ /1-acth 0wl

2C(t1z +1)

56)  E(lu-tls: (1) <

where
Iolly- = E(f—8ll5-)
+
1+ (2rik|)2 1
(57) + [Z( ZEZ.”L)‘Z) )|(h&)1/2—(h§)1/2‘2]2t1/2
K70

Proof: We letu andv be two different solutions of the Navier-Stokes equation
w = u-V anda = u+ Vv with distinct initial functionu, andv, and write the
integral equations fow

t | _
wix,t) = wo(x) — S| / & (VPR 21KUo) (1) (775, 1 Wi — %) (K, s)dS ex(X)
o /o 21ik
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The same estimates as in the proof of Theorem 4.2 give the estimate
-
ess su[ayt]||vv”+1||%+ < ||wo||%+ +C (t12 +t) ess su[é’q||w”||f.,+ (58)
1

with probability one. An iteration of this inequality gives the bound (56QED

5 The Existence of the Invariant Measure

In this section we will consider the stochastic Navier-Stokes equation

dw = (VWi — W + d5 L ()2 — b)dt + ; he/%dBkex (59)
k=0

with initial data
W(x,0) = Uo +u0(x)

whereu € L%(T?), the dot indicating that the mean is equal to zero kgl the
constant (21) keeping the mean equal to zero. We will use that the solutions
u(x,t), wherew(x,t) = Up+u(x,t), exist inL(§+ 2 by Theorem 4.2, and that the

4

mean flowU, is constant. Since, by Theorem 4.2 , we can even take the initial
datau®(x) € L%(T?), the equation (59) defines a flow 6A(T?). The reasoning is
that if L%(x) € L2(T1), thenK +u® e W3 - 2(T1), fort > 0. This is the physical
situation we are interested in, namely fully developed turbulence with nontrivial
mean flow, and it applies to most rivers and streams see [24, 25].

More concretely, we can consider the initial value problent.®(T?),

du= (Vuy — Uoux—uu>(+6;1(ux)2—b)dt+;h&/zdﬁtke,(
K70

(60) ux,0) = u(x)
where

12 _ (1+(2nmk)S/2T) 24 oz 3
YoT 2, e MreRlRedlz)Tate

0 being arbitrarily small anc is the constant in Theorem 4.1. This stochastic
initial value problem is equivalent to the integral equation (26). Then by Theorem
4.2 the initial value problem (60) defines a flow lIof(T?).
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If @is a bounded function oh?(T?) then the invariant measumu for the
SPDE (60) is given by the limit

lim E(g(u(@.0) = [, oy AW (61)

In this section we proof that this limit exists and is unique. We prove below that

the limit exist in thaiV(3 - 2)(T1) norm but since these dominate #&T?) norm
the conclusions will follow folL?(T?).

Theorem 5.1 The integral equation (26) possesses a unique invariant measure.

Corollary 5.1 The invariant measure dp is ergodic and strongly mixing.

The corollary follows immediately from Doob’s Theorem on invariant measures,
see for example [30].
We prove the theorem in three lemmas. First we define a transition probability

RWO,M) = £u(t)(Tr), TcE,

whereL is the law ofu(t), u is the initial condition ancE is the naturab algebra
of L(T?). Then

1 T
Rr(W0,.) = —/ RO, )dt
T Jo
is a probability measure drf(T?). By the Krylov-Bogoliubov theorem, see [30],

if the sequence of measurBs is tight then the invariant measudgtis the weak
limit

1 /7 0
dp() = Jim = [ R, )t
Namely,
R:dv(T) = / Rr (W0, T")dv(u°)
L2(T?)
and

<Rv,@>= [ guO)Rr(W?,M)dv(u) — / G(UO) (L)
L2(T) L2(T1)

asT — oo,
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Lemma 5.1 The sequence of measures

I 0 ’

Proof: By the inequality (34)
1 /7 >
= [ EduiZ)@dt<Clo
0 7

- 5+ . 5+ . . .y . .
The spaceHi (T1) =W -2 is relatively compact i .?(T?) so it suffices to
. 5+
show thatu(t) lies in a bounded set ikl 4 (T1) almost surely, or for alt > 0
there exists aR such that,

1 T
—/ P(u®)|2. <R)dt>1—¢
T Jo 3

for T > 1. But this follows from Chebychev’s inequality, similarly as in Lemma
4.5, namely,

1T 1
—/ P(Ju(t)||s+ > R)dt < =CU < &
T Jo z R

for R sufficiently large. By Theorem 4.2 we can take the initial data3fI?).
This proves that the sequence of measures is tight. QED

Next we prove the strong Feller property, see [30].

Lemma 5.2 The Markovian semigroup Benerated by the integral equation (26)
is strongly Feller.

Proof: We compare the operators
v

and
A == —Za;luXax

onL?(T1), theL? space of functions with mean zero. The operatirSbounded,
see Kato [18],
IAVI| < al[vi[ + b[|SV]
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- . . _ o 4
with the coefficients = 0 andb = i Uy |2,

16

2 1 12 20, 12
[|AV]| = 4|05 “uxvy|| §4|Ux|2|Vx’2§V2—)\1

V) 16
Bl 50808 = - unBlISvI?

by Poincaé’s inequality, sincey, = 0 has mean zero, wheke = 4. Taking the
expectation we get that

16
E(||lAv|?) = Vz—)\lE(!Ux\g)HSWZ

sinceSis deterministic. Nows generates a contraction semi-group and gistS
bounded implies tha&+ A also generates a contraction semi-group, see Theorem
2.4, page 499 in Kato [18]. Moreover, it will be shown by a direct computation
below that the operator

\Y)

also generates a contraction semi-group and thus by Theorem 2.7, page 501 in
Kato [18], the operator
T=B+S+A

generates a contraction semi-group that we will denote
V(t)=e'
This semi-group satisfies the estimate, Kato [18],
V<1 (62)

and the first spatial derivative dfis also bounded by a constavit
We will now solve the equation

Vi = Bv
whereB is the operator above. The initial value problem

W = VWix — (Ug + U)Wy — WU
w(0) = 8(X)
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for the functional derivativev(x,t) = 338‘8 can be solved by a combination of

Feynmann-Kac and Cameron-Martin, see McKean [23]. Namely, after a reversal
of timet —s— s, w can be written as

W(X = ;1) = efo(Uetu(sxe))-x—3 Jo Uorulsxs) Pdsye  ¢y],

whereK(x,t) is the periodic heat kernel in one dimension. Thus following McK-
ean [23],

@ - = [, [ BM [ Do) (u—v)etpwix = x, Haraxcy

where,h = v+ (u—v)r and@ (u) = E(g(u(t)). BM denotes the Brownian mean
over the individual motions. Thus by Lemma 5.3 and Schwarz inequality

X |

@ (W) — @ (V)] < 2(lim ==+ |Uo| + |uleo) [ @] oo|u — V2,

wherex; € T1, since
BM (e/o(Uo-+u(ss)) -0xs—3 Jo [Uo-u(sixs) Pdsy _  (gfo(Uo+u(ss))-dhe—3 o lUotu(sixs) *ds) _ 1
or

@) —aW)] = C(Uo|+[ulls+)[@le| (U—V)[2
(63) < C(Wol +lulls ) @les][ (U =)l 5+

by the Gagliardo-Nirenberg inequalities. This implies that the Markovian semi-
. - +
groupR is strongly Feller, both in.2 and inW(? - 2), since||ul|s- is bounded,
4

with probability one, by Lemma 4.5.
Now repeating this argument with the operator

T - Vag + 26;1UX6)( - (UO + u)ax - U)(

instead ofB we get the inequality

@ (U) — @ (W) = /Ol/olTM/olD(p(h) - (U=w)(y,t)v(x t)drdxdy

whereT M denotes the mean over the densities of the semi-gvd@tipgenerated
by T. We do not know these densities explicitly as those above but we can still
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estimate them and their derivatives with respect tsing the estimates (62) on
V(t) above. By similar estimates above and integration by parts combined with
Itd's Lemma we get the estimate

|@(U) = @(W)| < Cl@leo|u—w]|

either in2 orW(i - 2 This proves the strong Feller property. QED
Lemma 5.3
(64) - Og(h) - (u—Vv)(y,t)w(X = X%, t)dx=

[ G Vot uttx))eth) - (u=v) (s wlx =t
Proof: Extendingu andw to all of R by use of periodicity we can write

- Og(h) - (u—Vv)(y,t)w(X =X, t)dx=
e i

(2th)%

/R () - (U— V) (y, t)eloUerulsxs)) dx—3 o Uo+u(sxe) *ds hex OX

Xt

_ /R (3 +Uo+u(tx))@(h) (u—v)(%.1)

X2
% alo(Uo+u(sxs))-dxs—3 Jo Uo+u(S,Xs)2dS(;m2:t) I |x=x dX
Xt

- /Tl(? +Uo 4 u(t, %)) @(h) - (u— V) (y,t)w(x = %, t)dX

by integration by parts and Ito’s formula, and folding bacKfoagain by use of
periodicity. QED

Finally we prove irreducibility, see [30], d®. The proof of this lemma is an
application of stochastic control theory.

Lemma 5.4 The Markovian semigroup Benerated by the integral equation (26)
is irreducible.
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Proof: We first consider the linear deterministic equation

z +Uopzx = VZyx + W(X, t)
(65) z(x,0) =0, z(x,T) = b(x)

and the deterministic equation

Yt +UoYx = Vsx— V¥ + 05 1 (¥x)2 — b+ Qh(x, t)
(66) y(x,0) =0, y(x,T) =b(x)

whereQ: H~1 — WI(3 2, where both spaces have mean zérkeeps the mean
equal zero as in (21) and kern@lis empty. We will define the operat® by

coefficients in the suny ..o h&/zA{‘a(, where theAl are the Ornstein-Uhlenbeck
processes from (9). Then it is easy to check th&ff= Yo hﬁ/ 2 frex = 0, then
f =0 sincehy/? # 0 for all k # 0.

We can pick a functionw e C([O,T];W(??Z)) such thaiz(x,T) = b(x) and a
corresponding functioh € L([0, T|;H~1(T?)). Namely,Qh= zz — d;(z)? +
w, since the kernal of) is empty; theny = z is a solution of the deterministic
Navier-Stokes equation (66) above. This means that (66) is exactly controllable,
see Curtain and Zwartz [7].

Now we comparg and the solutiom of the integral eqution (26). By the same
estimate as in Lemma 4.6 we get the inequality

1
E(lu=yls+) < E(lluo(x,t) = Yo(X1)l| s )t2

as long asvg = Uo(X,t) — Yo(X,t) is sufficiently small. Herg satisfies the integral
eguation

t
y= yo+/0 K+ (—yyx + 05 1(yx)? — b)ds

whereK is the oscillatory heat kernal in (7) agg= f(t, Kxwds Now the inequal-
ity (56) implies that fot <T andd < 1

(67)
0
E(lu=yll5) < E(luo(x) ~Yox Dl VT < 5

since we can pick such that

€d

E(|[uo(X,t) _YO(Xat)||g+) < ﬁ

32



fort <T. We are using here that the support of the lawugfis the same in

W > 2(T1) as inL2(TY), since the former space is smoothly embedded in the
latter, see [29]; and that the closure of the imag®gh theC° (supin t) norm, is
dense in the support of the law of, compare Theorems 7.4.1 and 7.4.2 in [30].
This implies that the probability

P(lu(T) bl <) >

P () -yMls- < 5

3
> and ()~ b(T)|s+ <) =1-5>0

by (67) and Chebychev’s inequality, since (66) is exactly controllable. QED

6 Hack's Law

We now use the invariant measure in Section 5 to derive the scaling of the second
structure function of the turbulent flow that solves Equation (26).

Lemma 6.1 The second structure function of the turbulent flow that solves the
integral equation (26) scales as

209 = [ 1, 10y —u) ) <l

Proof: By Corollary 4.1 the solutions of (26) aredktler continuous with expo-
nent 3/4. Thus

§+
[u(y+x) —u(y)| < Clul| s+, |x[2
(4 72)
Moreover, by Theorem 4.2y satisfies the bound

E([lullfs+ ) <ClUol
4

)
by Equation (34). Substituting these bounds into the integral and using that

E(luly- ) = [ Ul dn

gives the estimate. QED
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The scaling of the structure functions depends on the dimensions, see [14], in

three dimensions;(x) ~ x5 corresponding to Kolmogorov’s scaling.
Hack’s law describes how the lengtlof a main river in a river basin scales
with the aredA of the basin, see Hack [16],

| — c AO568

wherec is a constant that varies from basin to basin, see Gray [15]. Hack’s law
describes the fact that most river basins have an oval shape; that is they are longer
along the direction of the main river than perpendicular to it. As discussed in
the introduction there are several ranges in Hack’s law depending on the size of
the river basin, but we restrict our discussion here to basins which are large, say
> 200kn? but not too large, say: 25,000kn?, see Mueller [26].

Now Hack’s law is proven in the following manner. In [4] the equations de-
scribing the sediment flow are linearized about convex (concave in the terminol-
ogy of geomorphology) surface profiles describing mature surfaces. Then the col-
ored noise generated by the turbulent flow drives the linearized equations and the
solutions obtain the same color (scaling), see Theorem 5.3 in [4]. The resulting
variogram (second structure function) of the surfaces scales with the roughness
exponenty = %, see Theorem 5.4 in [4]. This determines the roughness coeffi-
cientx of mature landsurfaces. This roughness applies to the transport limited
landsurfaces studied in [4] and are in excellent agreement with numerical simula-
tions [6] and empirical results from Digital Elevation Models [35], of areas where
the transport limited assumption applies.

Hack’s law is a universal statistical law and applies to detachment limited
landsurfaces as well as transport limited ones. In the former case we have to
wait for the rock to weather before it can be eroded whereas in the latter case
all the sediment can be eroded if sufficient water is available. There are good
reasons to believe that the theory developed in [4] will apply to the detachment
limited situation as well but this remains to be shown. However, a question still
remained, namely how the spatial roughngss 3/4 of a channel or a riverbed,
caused by the turbulent flow eroding the bed, is transported to the whole surface?
This question in answered in the paper [5] which studies the meanderings of an
experimental stream on a acrylic plate. It is show in [5] that the meanderings of
this experimental stream are caused by noise in the water flow that gives rise to
turbulence and the meandering coefficient of the experimental stream is exactly
the roughness coefficient of the turbulent flowxoe= 3/4. Since the meanders
of the experimental stream are expected to reflect exactly the roughness of the
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flow this constitutes the first direct verification of the theory presented in this
paper. Moreover, the question posed above is answered: The roughness of the
meanderings implies that the scaling of the area covered by them is in accordance
with Hack’s law, see the argument below. This indicates that the river meanderings
cover the whole river basin over time, thus endowing the surface of the whole
basin with the same spatial roughness as the river channel.

The final step is the following derivation of Hack’s law is copied from [6].

6.1 The Origin of Hack’s Law

The preceding results allow us to derive some of the fundamental scaling results
that are known to characterize fluvial landsurfaces. In particular, the avalanche
dimension computed in [6] and derived in [4], given the roughness coeffigjent
allows us to derive Hack’s Law relating the length of a rivdo the areaA of
the basin that it drains. This is the area of the river network that is given by the
avalanche dimensions

A~|P (68)

and the avalanche dimensiondds= 1+ x. This relation says that if the length
of the main river id then the width of the basin in the direction, perpendicular to
the main river, idX. Notice that ifL ~ L is the diameter of the basin along the
main river andL; ~ LX is the with of the basis, perpendicular to this direction,
then the relation above simply says that the area of the basin is proportional to
their product

A~ L, =LMX

However, this does not take into account the sinuosity of the river
[ ~ Lﬁ‘

wherea is the meandering exponent or sinuosity (fractal dimension) of real rivers.
Taking sinuosity into account gives

b X
a

ANL :Lu

by substitution into Hack’s law (68). It turns out that for real rivars: 1.1 [22]
is small so it does not make much difference whetharlL is used in Hack’s law.
The origin of the statistical law for sinuosity

I~ L
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of real rivers is still a mystery. It is is clear from [5] that turbulent flow in the river
contributes but it does not provide the complete explanation for the meandering
exponenty, as it does for the roughness exponemind Hack’s law (68).

Stable scalings for the surface emerge together with the emergence of the sep-
arable solutions describing the mature surfaces, see [6] and [4]. We note that in
this case( = % as shown in Lemma 6.1 above, hence we obtain

1
(69) | ~ ATX
~ AO.571

a number that is in excellent agreement with observed values of the exponent of
Hack’s law of 0568, see [15].
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