Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Combining PET and Compton imaging with edge-on CZT detectors for enhanced diagnostic capabilities.

Abstract

The key metrics for positron emission tomography (PET) imaging devices include the capability to capture the maximum available amount of annihilation photon information while generating high-quality images of the radiation distribution. This capability carries clinical implications by reducing scanning time for imaging, thus reducing radiation exposure for patients. However, imaging quality is degraded by positron range effects and the non-collinearity of positron annihilation photons. Utilizing an edge-on configuration of cadmium zinc telluride (CZT) detector crystals offers a potential solution to increase PET sensitivity. The high cross-section of CZT and its capacity to detect both 511 keV annihilation gammas and high-energy prompt gammas, along with multiple photon interaction events, contribute to this increased sensitivity. In this study, we propose a dual-panel edge-on CZT detector system comprised of 4 × 4 × 0.5 cm3 CZT detectors, with panel dimensions of 20 × 15 cm2 and a thickness of 4 cm. In this study, we demonstrate the increased sensitivity of our imaging system due to the detection of the Compton kinematics of high-energy gammas originating from prompt-gamma-emitting isotopes. This was achieved using Monte Carlo simulations of a prompt-gamma-emitting isotope,72As, with mean positron ranges >3 mm. Our systems dynamic energy range, capable of detecting gammas up to 1.2 MeV, allows it to operate in a dual-mode fashion as both a Compton camera (CC) and standard PET. By presenting reconstructions of 72As, we highlight the absence of positron range effects in CC reconstructions compared to PET reconstructions. In addition, we evaluate the systems increased sensitivity resulting from its ability to detect high-energy prompt gammas.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View