- Main
The pharmacological perturbation of brain zinc impairs BDNF-related signaling and the cognitive performances of young mice
Abstract
Zinc (Zn2+) is a pleiotropic modulator of the neuronal and brain activity. The disruption of intraneuronal Zn2+ levels triggers neurotoxic processes and affects neuronal functioning. In this study, we investigated how the pharmacological modulation of brain Zn2+ affects synaptic plasticity and cognition in wild-type mice. To manipulate brain Zn2+ levels, we employed the Zn2+ (and copper) chelator 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, CQ). CQ was administered for two weeks to 2.5-month-old (m.o.) mice, and effects studied on BDNF-related signaling, metalloproteinase activity as well as learning and memory performances. CQ treatment was found to negatively affect short- and long-term memory performances. The CQ-driven perturbation of brain Zn2+ was found to reduce levels of BDNF, synaptic plasticity-related proteins and dendritic spine density in vivo. Our study highlights the importance of choosing "when", "where", and "how much" in the modulation of brain Zn2+ levels. Our findings confirm the importance of targeting Zn2+ as a therapeutic approach against neurodegenerative conditions but, at the same time, underscore the potential drawbacks of reducing brain Zn2+ availability upon the early stages of development.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-