Skip to main content
eScholarship
Open Access Publications from the University of California

Data Readiness for AI: A 360-Degree Survey

Published Web Location

https://doi.org/10.1145/3722214Creative Commons 'BY' version 4.0 license
Abstract

Artificial Intelligence (AI) applications critically depend on data. Poor quality data produces inaccurate and ineffective AI models that may lead to incorrect or unsafe use. Evaluation of data readiness is a crucial step in improving the quality and appropriateness of data usage for AI. R&D efforts have been spent on improving data quality. However, standardized metrics for evaluating data readiness for use in AI training are still evolving. In this study, we perform a comprehensive survey of metrics used to verify data readiness for AI training. This survey examines more than 140 papers published by ACM Digital Library, IEEE Xplore, journals such as Nature, Springer, and Science Direct, and online articles published by prominent AI experts. This survey aims to propose a taxonomy of data readiness for AI (DRAI) metrics for structured and unstructured datasets. We anticipate that this taxonomy will lead to new standards for DRAI metrics that would be used for enhancing the quality, accuracy, and fairness of AI training and inference.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View