- Main
Rh-catalyzed C–C bond cleavage by transfer hydroformylation
Published Web Location
https://doi.org/10.1126/science.1261232Abstract
The dehydroformylation of aldehydes to generate olefins occurs during the biosynthesis of various sterols, including cholesterol in humans. Here, we implement a synthetic version that features the transfer of a formyl group and hydride from an aldehyde substrate to a strained olefin acceptor. A Rhodium (Xantphos)(benzoate) catalyst activates aldehyde carbon-hydrogen (C-H) bonds with high chemoselectivity to trigger carbon-carbon (C-C) bond cleavage and generate olefins at low loadings (0.3 to 2 mole percent) and temperatures (22° to 80°C). This mild protocol can be applied to various natural products and was used to achieve a three-step synthesis of (+)-yohimbenone. A study of the mechanism reveals that the benzoate counterion acts as a proton shuttle to enable transfer hydroformylation.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-