Skip to main content
eScholarship
Open Access Publications from the University of California

A study of particle generation during laser ablation with applications

Abstract

A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flowrate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior: particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in measurements using inductively coupled plasma mass spectrometry (ICP-MS) which result in errors. Three different methods were employed to study the effects of particle size on chemical analysis: generating smaller particles utilizing a fs laser, filtering out larger particles with a cascade impactor and altering the size distribution by using a second pulse to fracture particles generated from the first pulse. It was found that the chemical composition of the particles varies with particle size. The variation of the composition with respect to particle size was analyzed and it was proposed that it was related to the vapor formed particles condensing on larger ejected liquid droplets.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View