- Main
Bayesian modeling of human–AI complementarity
Abstract
SignificanceWith the increase in artificial intelligence in real-world applications, there is interest in building hybrid systems that take both human and machine predictions into account. Previous work has shown the benefits of separately combining the predictions of diverse machine classifiers or groups of people. Using a Bayesian modeling framework, we extend these results by systematically investigating the factors that influence the performance of hybrid combinations of human and machine classifiers while taking into account the unique ways human and algorithmic confidence is expressed.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-