- Main
Rigged configuration bijection and proof of the X = M conjecture for nonexceptional affine types
Published Web Location
https://doi.org/10.1016/j.jalgebra.2018.08.031Abstract
We establish a bijection between rigged configurations and highest weight elements of a tensor product of Kirillov–Reshetikhin crystals for all nonexceptional types. A key idea for the proof is to embed both objects into bigger sets for simply-laced types An(1) or Dn(1), whose bijections have already been established. As a consequence we settle the X=M conjecture in full generality for nonexceptional types. Furthermore, the bijection extends to a classical crystal isomorphism and sends the combinatorial R-matrix to the identity map on rigged configurations.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-