Aggregated Bit Vector Search Algorithms for Packet Filter Lookups
Skip to main content
eScholarship
Open Access Publications from the University of California

Aggregated Bit Vector Search Algorithms for Packet Filter Lookups

Abstract

Packet classification is important for applications such as firewalls, intrusion detection, and differentiated services. Existing algorithms for packet classification reported in the literature scale poorly in either time or space as filter databases grow in size. Hardware solutions such as TCAMs do not scale to large classifiers. However, even for large classifiers (say 100,000 rules), any packet is likely to match a few (say 10) rules. Our paper seeks to exploit this observation to produce a scalable packet classification scheme called Aggregated Bit Vector (ABV). Our paper takes the bit vector search algorithm (BV) described in \cite{lucent} (which takes linear time) and adds two new ideas, recursive aggregation of bit maps and filter rearrangement, to create ABV (which can take logarithmic time for many databases). We show that ABV outperforms BV by an order of magnitude using simulations on both industrial firewall databases and synthetically generated databases.

Pre-2018 CSE ID: CS2001-0673

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View