
UC San Diego
Technical Reports

Title
Aggregated Bit Vector Search Algorithms for Packet Filter Lookups

Permalink
https://escholarship.org/uc/item/5jf0d4xp

Authors
Baboescu, Florin
Varghese, George

Publication Date
2001-06-03

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5jf0d4xp
https://escholarship.org
http://www.cdlib.org/

Aggregated Bit Ve
tor Sear
h Algorithms for Pa
ket Filter Lookups

Florin Baboes
u, George Varghese

Dept. of Computer S
ien
e and Engineering

University of California, San Diego

9500 Gilman Drive

La Jolla, CA 92093-0114

fbaboes
u, vargheseg�
s.u
sd.edu

Abstra
t

Pa
ket
lassi�
ation is important for appli
ations su
h as �rewalls, intrusion dete
tion, and di�erentiated

servi
es. Existing algorithms for pa
ket
lassi�
ation reported in the literature s
ale poorly in either time or

spa
e as �lter databases grow in size. Hardware solutions su
h as TCAMs do not s
ale to large
lassi�ers.

However, even for large
lassi�ers (say 100,000 rules), any pa
ket is likely to mat
h a few (say 10) rules. Our

paper seeks to exploit this observation to produ
e a s
alable pa
ket
lassi�
ation s
heme
alled Aggregated Bit

Ve
tor (ABV). Our paper takes the bit ve
tor sear
h algorithm (BV) des
ribed in [10℄ (whi
h takes linear time)

and adds two new ideas, re
ursive aggregation of bit maps and �lter rearrangement, to
reate ABV (whi
h
an

take logarithmi
 time for many databases). We show that ABV outperforms BV by an order of magnitude using

simulations on both industrial �rewall databases and syntheti
ally generated databases.

1 Introdu
tion

Every Internet router today
an forward entering Internet messages (pa
kets) based on the destination address. The

32 bit IP destination address is looked up in a table whi
h then determines the output link on whi
h the pa
ket is

sent. However, for a
ompetitive advantage, many routers today
hoose to do additional pro
essing for a spe
i�

subset of pa
kets. Su
h additional pro
essing in
ludes providing di�erentiated output s
heduling (e.g., Voi
e over

IP pa
kets are routed to a high priority queue), taking se
urity-related a
tions (e.g., dropping pa
kets sent from

a
ertain subnet or
agging suspi
ious pa
kets for later analysis), load balan
ing (e.g., routing di�erent pa
kets to

di�erent servers) and doing traÆ
 measurement (e.g., measuring traÆ
 between subnet pairs).

Although the details of the additional pro
essing
an vary greatly, a
ommon requirement of all the fun
tions

above is that routers be able to
lassify pa
kets based on pa
ket headers into equivalen
e
lasses
alled
ows. A
ow

is de�ned by a rule (e.g., pa
kets whose sour
e address starts with pre�x bits S, the destination address is D, and

whi
h is sent to the server port for web traÆ
). Asso
iated with ea
h
ow is an a
tion whi
h de�nes the additional

pro
essing (e.g., send to a spe
i�
 queue, drop, make a
opy, update
ounters).

Thus pa
ket
lassi�
ation routers have a database of rules, one for ea
h
ow type that the router wants to pro
ess

di�erently. The rules are expli
itly ordered by a network manager (or proto
ol) that
reates the rule database. Thus

when a pa
ket arrives at a router, the router must �nd a rule that mat
hes the pa
ket headers; if more than one

mat
h is found, the �rst mat
hing rule is applied.

S
alable Pa
ket Classi�
ation: This paper is about the problem of performing s
alable pa
ket
lassi�
ation for

routers at wire speeds even as rule databases in
rease in size. Forwarding at wire speeds requires forwarding minimum

sized pa
kets in the time it takes to arrive on a link; this is
ru
ial be
ause otherwise one might drop important

traÆ
 before the router has a
han
e to know it is important [10℄. With Internet usage doubling every 6 months,

ba
kbone link speeds have in
reased from OC-48 to OC-192 (2.4 to 10 Gigabits/se
ond), and speeds up to OC-768 (40

Gigabits/se
ond) are proje
ted. Even link speeds at the network edge have in
reased from Ethernet (10 Mbit/se
)

to Gigabit Ethernet.

Further, rule databases are in
reasing in size. The initial usage of pa
ket
lassi�
ation for se
urity and �rewalls

generally resulted in fairly small databases (e.g., the largest database in a large number of Cis
o rule sets studied

1

by [4℄ is around 1700). This makes sense be
ause su
h rules are often entered by managers. However, in the very

popular Di�erentiated Servi
es [2℄ proposal, the idea is to have routers at the edge of the ba
kbone
lassify pa
kets

into a few distin
t
lasses that are marked by bits in the TOS �eld of the IP header. Ba
kbone routers then only

look at the TOS �eld. If, as seems likely, the Di�Serv proposal rea
hes fruition, the rule sets for edge routers
an

grow very large.

Similarly, rule sets for edge routers that do load balan
ing [1℄
an grow very large. Su
h rule sets
an potentially

be installed at routers by a proto
ol; alternately, a router that handles several thousand subs
ribers may need to

handle say 10 rules per subs
riber that are manually entered. For all these reasons, we believe rule databases of up

to 100,000 rules are of pra
ti
al interest.

2 Previous Work

Previous work in pa
ket
lassi�
ation [10, 15, 4, 6, 5℄ has shown that the problem is inherently hard. Most pra
ti
al

solutions we know of either use linear time [10℄ to sear
h through all rules sequentially, or use a linear amount of

parallelism (e.g., Ternary-CAMs as in [11℄). Ternary CAMs are Content Addressable Memories that allow wild
ard

bits. While Ternary-CAMs are very
ommon, su
h CAMs have smaller density than standard memories, dissipate

more power, and require multiple entries to handle rules that spe
ify ranges. Thus CAM solutions are still expensive

for very large rule sets of say 100,000 rules, and are not pra
ti
al for PC-based routers [8℄. Solutions based on

a
hing [14℄ do not appear to work well in pra
ti
e be
ause of poor hit rates and small
ow durations [12℄, and still

need a fast
lassi�er as a ba
kup when the
a
he fails.

Another pra
ti
al solution is provided by a seminal paper that we refer to as the Lu
ent bit ve
tor s
heme [10℄.

The idea is to �rst sear
h for rules that mat
h ea
h relevant �eld F of the pa
ket header, and to represent the result

of the sear
h as a bitmap of rules that mat
h the pa
ket in �eld F . Then the rules that mat
h the full header
an be

found by taking the interse
tion of the bitmaps for all relevant �elds F . While this s
heme is still linear in the size

of the ruleset, in pra
ti
e sear
hing through a bitmap is fast be
ause a large number of bits (up to 1000 in hardware,

up to 128 bits in software)
an be retrieved in one memory a

ess. While the Lu
ent s
heme
an s
ale to around a

reasonably large number of rules (say 10,000) the inherently linear worst-
ase s
aling makes it diÆ
ult to s
ale up

to large rule databases.

From a theoreti
al standpoint, it has been shown [10℄ that in its fullest generality, pa
ket
lassi�
ation requires

either O(logN

k�1

) time and linear spa
e, or logN time and O(N

k

) spa
e, where N is the number of rules, and k is

the number of header �elds used in rules. Thus it
omes as no surprise that the solutions reported in the literature

for k > 2 either require large worst
ase amounts of spa
e (e.g.,
rossprodu
ting[15℄, RFC [4℄, HiCuts [5℄) or time

(e.g., bit ve
tor sear
h [10℄, ba
ktra
king [15℄).

However, the papers by Gupta and M
Keown [4, 5℄ introdu
ed a major new dire
tion into pa
ket
lassi�
ation

resear
h. Sin
e the problem is unsolvable in the worst
ase, they look instead for heuristi
s that work well on
ommon

rule sets. In parti
ular, after surveying a large number of rule sets [4℄, they have found that rule interse
tion is very

rare. In other words, it is very rare to have a pa
ket that mat
hes multiple rules. Sin
e the examples that generate

the worst
ase bounds entail multiple rule sets that interse
t, it is natural to wonder whether there are s
hemes that

are provably better given some su
h stru
tural assumption on real databases.

Among the papers that report heuristi
s [4, 5, 6℄, the results on real databases are, indeed, better than the worst

ase bounds. Despite this, the RFC s
heme of [4℄ still requires
omparatively large storage. The HiCuts s
heme [5℄

does better in storage (1 Mbyte for 1700) and requires 20 memory a

esses for a database of size 1700. Thus while

these s
hemes do seem to exploit the
hara
teristi
s of real databases they do not appear to s
ale well (in time and

storage) to very large databases.

Finally, there are several algorithms that are spe
ialized for the
ase of rules on two �elds (e.g., sour
e and

destination IP address only). For this spe
ial
ase, the lower bounds do not apply (they apply only for k > 2); thus

hardly surprisingly, there are algorithms that take logarithmi
 time and linear storage. These in
lude the use of

range trees and fra
tional
as
ading [10℄, grid-of-tries [15℄, area-based quad-trees [16℄, and FIS-trees [3℄. While these

algorithms are useful for spe
ial
ases (su
h as measuring traÆ
 between sour
e and destination subnets), they do

not solve the general problem and are hen
e not relevant to the rest of our paper.

We note that the FIS trees paper [3℄ sket
hes an extension to k > 2 but suggests the \memory usage may be large";

while the authors [3℄ suggest the use of
lustering heuristi
s
ould improve multidimensional FIS performan
e, their

paper does not des
ribe a single experiment on a general purpose
lassi�er. Thus, while the extended FIS approa
h

2

appears to have merit, it is diÆ
ult to evaluate FIS trees as a general purpose approa
h until it is
ompletely

implemented and evaluated on real (even small) multidimensional
lassi�ers.

In summary, for the general
lassi�
ation problem of 3 or more �elds, we �nd that existing solutions do not s
ale

well in one of time or storage. Our paper will use the Lu
ent bit ve
tor s
heme as a point of departure (sin
e it

already s
ales to medium size databases, and is amenable to implementation using either hardware or software). Our

Aggregated Bit Ve
tor s
heme then adds two new ideas, rule aggregation and rule rearrangement, that
onsiderably

enhan
e the s
alability of the Lu
ent s
heme. The reader may immediately obje
t that rule rearrangement
an lead

to in
orre
t answers be
ause the algorithm
ould inter
hange two overlapping rules. Our way out of this dilemma is

to �nd all mat
hes and then to use a mapping table to map all mat
hed rule numbers to the rule numbers in the

original order. This is eÆ
ient if the number of rules mat
hing a given pa
ket is small, a property that has been

observed on a large number of real databases [4℄.

We note that while the HiCuts [5℄ s
heme also does a form of hierar
hi
al aggregation (based on subspa
es of the

original d-dimensional hyper-spa
e), our s
heme performs a
ompletely di�erent form of aggregation (based on the

position or
ost of a rule). We elaborate more on this di�eren
e later.

3 Problem Statement

We assume that the information relevant to a lookup is
ontained in K distin
t header �elds in ea
h pa
ket. These

header �elds are denoted H

1

; H

2

; : : : ; H

k

, where ea
h �eld is a string of bits. For instan
e, the relevant �elds for an

IPv4 pa
ket
ould be the Destination Address (32 bits), the Sour
e Address (32 bits), the Proto
ol Field (8 bits),

the Destination Port (16 bits), the Sour
e Port (16 bits), and TCP
ags (8 bits). The number of relevant TCP

ags is limited, and so rule databases often
ombine the proto
ol and TCP
ags into one �eld|for example, we

an use TCP-ACK to mean a TCP pa
ket with the ACK bit set. Note that many rule databases allow the use of

other header �elds besides TCP/IP su
h as MAC addresses, and even Appli
ation (e.g., http) headers. Thus, the

ombination (D;S; TCP-ACK ; 80; 2500), denotes the header of an IP pa
ket with destination D, sour
e S, proto
ol

TCP, destination port 80, sour
e port 2500, and the ACK bit set.

The rule database of a router
onsists of a �nite sequen
e of rules, R

1

; R

2

: : : R

N

. Ea
h rule is a
ombination of K

values, one for ea
h header �eld. Ea
h �eld in a rule is allowed three kinds of mat
hes: exa
t mat
h, pre�x mat
h,

or range mat
h. In an exa
t mat
h, the header �eld of the pa
ket should exa
tly mat
h the rule �eld|for instan
e,

this is useful for proto
ol and
ag �elds. In a pre�x mat
h, the rule �eld should be a pre�x of the header �eld|this

is useful for blo
king a

ess from a
ertain subnetwork. In a range mat
h, the header values should lie in the range

spe
i�ed by the rule|this is useful for spe
ifying port number ranges.

Ea
h rule R

i

has an asso
iated a
tion a
t

i

, whi
h spe
i�es how to forward the pa
ket mat
hing this rule. The

a
tion spe
i�es if the pa
ket should be blo
ked. If the pa
ket is to be forwarded, it spe
i�es the outgoing link to

whi
h the pa
ket is sent, and perhaps also a queue within that link if the message belongs to a
ow with bandwidth

guarantees.

We say that a pa
ket P mat
hes a rule R if ea
h �eld of P mat
hes the
orresponding �eld of R|the mat
h type

is impli
it in the spe
i�
ation of the �eld. For instan
e, let R = (1010�; �; TCP; 1024{1080; �) be a rule, with

a
t = drop. Then, a pa
ket with header (10101 : : :111, 11110 : : :000, TCP , 1050, 3) mat
hes F , and is therefore

dropped. The pa
ket (10110 : : :000, 11110 : : :000, TCP , 80, 3), on the other hand, doesn't mat
h R. Sin
e a pa
ket

may mat
h multiple rules, we de�ne the mat
hing rule to be the earliest mat
hing rule in the sequen
e of rules.

We wish to do pa
ket
lassi�
ation at wire speed for minimum sized pa
kets and thus speed is the dominant

metri
. Be
ause both modern hardware and software ar
hite
tures are limited by memory bandwidth, it makes sense

to measure speed in terms of memory a

esses. It is also important to redu
e the size of the data stru
ture that

is used to allow it to �t into the high speed memory. The time to add or delete rules is often ignored, but it is

important for dynami
 rule sets, that
an o

ur in real �rewalls. We show towards the end of our paper that our

s
heme
an be modi�ed to handle fast updates at the
ost of in
reased sear
h time.

4 Towards a new s
heme

In this se
tion, we introdu
e the ideas behind our s
heme by �rst des
ribing the Lu
ent bit ve
tor s
heme as our

point of departure. Then, using an example rule database, we show our two main ideas: aggregation and rule

rearrangement. In the next se
tion, we will formally des
ribe our new s
heme.

3

4.1 Bit Ve
tor Linear Sear
h

The Lu
ent bit ve
tor s
heme is a form of divide-and-
onquer whi
h divides the pa
ket
lassi�
ation problem into

k subproblems, and then
ombines the results. To do so, we �rst build k 1-dimensional tries asso
iated with ea
h

dimension (�eld) in the original database. We assume that ranges are either handled using a range tree instead of a

trie, or by
onverting ranges to tries as shown in [15, 6℄. An N�bit ve
tor is asso
iated with ea
h node of the trie

orresponding to a valid pre�x. (Re
all N is the total number of rules).

Figure 2 illustrates the
onstru
tion for the simple two dimensional example database in Figure 1. For example,

in Figure 1, the se
ond rule F

1

has 00* in the �rst �eld. Thus, the leftmost node in the trie for the �rst �eld,

orresponds to 00*. Similarly, the Field 1 trie
ontains a node for all distin
t pre�xes in Field 1 of Figure 1 su
h as

00*, 10*, 11*, 1*, and 0*.

Ea
h node in the trie for a �eld is labeled with a N -bit ve
tor. Bit j in the ve
tor is set if the pre�x
orresponding

to rule F

j

in the database mat
hes the pre�x
orresponding to the node. In Figure 1, noti
e that the pre�x 00* is

mat
hed by the values 00* and 0*, whi
h
orrespond to values in rules 1,2,4,5, and 6. Thus the eleven bit ve
tor

shown below the leftmost leaf node in Figure 2 is 11001110000. For now, only
onsider the boxed bit ve
tors and

ignore the smaller bit ve
tors below ea
h boxed bit ve
tor.

Rule F ield

1

Field

2

F

0

00� 00�

F

1

00� 01�

F

2

10� 11�

F

3

11� 10�

F

4

0� 10�

F

5

0� 11�

F

6

0� 0�

F

7

1� 01�

F

8

1� 0�

F

9

11� 0�

F

10

10� 10�

Figure 1: A simple example with 11 rules on two �elds.

FIELD 1

FIELD 2

0 1

0 1

11001110000

00100001101 00010001110

10000010110 01000011110 00011000001

10 0 1

0 0 1

Aggregate Size = 4

110

111

111 111 011

00001110000

010

111

00000001100

011

00000010110

011

00100100000

110

Figure 2: Two tries asso
iated with ea
h of the �elds in the database of Figure 1, together with both the bit ve
tors (boxed) and the aggregate

ve
tors (bolded) asso
iated with nodes that
orrespond to valid pre�xes. The aggregate bit ve
tor has 3 bits using an aggregation size of 4.

Bits are numbered from left to right.

4

When a pa
ket header arrives with �elds H

1

: : : H

k

, we do a longest mat
hing pre�x lookup (or narrowest range

lookup) in ea
h �eld i to get mat
hes M

i

and read o� the resulting bit ve
tors S(M

i

) from the tries for ea
h �eld i.

We then take the interse
tion of S(M

i

) for all i, and �nd the lowest
ost element of the interse
tion set. If rules are

arranged in non-de
reasing order of
ost, all we need to do is to �nd the index of the �rst bit set in the interse
ted

bit ve
tor. However, these ve
tors have N bits in length;
omputing the interse
tion requires O(N) operations. If W

is the size of a word of memory than these bit operations are responsible for

N�k

W

memory a

esses in the worst
ase.

Note that the worst
ase o

urs very
ommonly when a pa
ket header does not mat
h a single rule in the database.

4.2 Using aggregation to redu
e memory a

esses

Re
all that we are targeting the high
ost in memory a

esses whi
h essentially s
ales linearly O(N) ex
ept that the

onstant fa
tor is s
aled down by the word size of the implementation. With a word size of up to 1000 in hardware,

su
h a \
onstant" fa
tor improvement is a big gain in pra
ti
e. However, we want to do better by at least one order

of magnitude, and remove the linear dependen
e on N . To this end, we introdu
e the idea of aggregation.

The main motivating idea is as follows. We hope that if we
onsider the bit ve
tors produ
ed by ea
h �eld, the

set bits will be very sparse. For example, for a 100,000 rule database, if there are only 5 bits set in a bit ve
tor of

size 100,000, it seems a waste to read 100,000 bits. Why do we believe that bit ve
tors will be sparse? We have the

following arguments:

� Experien
e: The databases we have seen have every pa
ket mat
h at most 5 rules. Similar small numbers

have been seen in [5℄ for a large
olle
tion of databases up to 1700 rules.

� Extension: How will large databases be built? If they are based on aggregating several small
lassi�ers for a

large number of
lassi�ers, it seems likely that ea
h
lassi�er will be disjoint. If they are based on a routing

proto
ol that distributed
lassi�ers based on pre�x tables, then pre�x
ontainment is quite rare in the ba
kbone

table and is limited to at most 6 [6℄. Again, if a pa
ket mat
hes a large number of rules, it is diÆ
ult to make

sense of the ordering rules that give one rule priority over others.

While the fa
t that a given pa
ket mat
hes only a few rules, does not imply that the pa
ket
annot mat
h a large

number of rules in all dimensions (with only a few of the mat
hes aligning properly in all dimensions). However,

assume for now there is some dimension j whose bit ve
tor is sparse.

1

. To exploit the existen
e of su
h a sparse

ve
tor, our modi�ed s
heme, appends the bit ve
tor for ea
h �eld in ea
h trie with an aggregate bit ve
tor. First, we

�x a an aggregate size A. A is a
onstant that
an be tuned to optimize the performan
e of the aggregate s
heme;

a
onvenient value for A is W the word size. Next, a bit i is set in the aggregate ve
tor if there is at least one bit

k, k 2 [i�A; (i+ 1)�A℄. In other words, we simply aggregate ea
h group of A bits in the Lu
ent bit ve
tor into a

single bit (whi
h represents the OR of the aggregated bits) in the aggregate bit ve
tor.

Clearly, we
an repeat the aggregation pro
ess at multiple levels (forming a tree whose bits are the bits in the

original Lu
ent bit ve
tor for a �eld). This
an be useful for large enough N . However, sin
e we deal with aggregate

sizes that are at least 32, two levels of hierar
hy
an handle 32 � 32 � 32 = 32K rules. Using larger aggregate sizes

will in
rease the N that
an be handled further. Thus for mu
h of this paper, we will fo
us on one level (i.e., a single

aggregate bit ve
tor) or 2 levels (for a few syntheti
ally generated large databases). We note that the only reason

our results for syntheti
 databases are limited to 20,000 rules is be
ause our
urrent testing methodology (to
he
k

the worst-
ase sear
h time for all pa
ket header
ombinations) does not s
ale. Thus while we believe our algorithm

s
ales to very large
lassi�ers; we hope to prove worst-
ase times for sizes large than 20,000 after deploying the new

testing algorithm we are working on.

Why does aggregation help? The goal is to eÆ
iently
onstru
t the bit map interse
tion of all �elds without

examining all the leaf bit map values for ea
h �eld. For example, suppose that a given pa
ket header mat
hes only a

small
onstant number of rules in ea
h �eld. This
an be determined in
onstant time (even for largeN) by examining

the top level aggregate bit maps; we
an then only examine the leaf bit map values for whi
h the aggregate bits are

set. Thus, intuitively, we only have to examine a
onstant number of memory words (for ea
h �eld) to determine the

interse
tion be
ause the aggregate ve
tors allow us to qui
kly �lter out bit positions where there is no mat
h. The

goal is to have a s
heme that
omes
lose to taking O(log

A

N) memory a

esses, even for large N .

Figure 2 illustrates the
onstru
tion for the example database in Figure 1 using an aggregate size A = 4. Let's

onsider a pa
ket with Field 1 starting with bits 0010 : : : and Field 2 starting with bits 0100 : : :. From Figure 2 one

1

If this is not the
ase, as is
ommon, then our se
ond te
hnique of rearrangements
an make this assumption more true

5

an see that the longest pre�x mat
h is 00 for the �rst �eld and 01 for the se
ond one. The asso
iated bit ve
tors

are: 11001110000 and 01000011110 while the aggregate ones (shown in bold below the regular bit ve
tors) are: 110

and 111. The AND operation on the two aggregate ve
tors yields 110, showing that a possible mat
hing rule must

be lo
ated only in the �rst 8 bits. Thus it is not ne
essary to retrieve the remaining 4 bits for ea
h �eld.

Noti
e that in this small example, the
ost savings (assuming a word size of 4 is only 2 memory a

esses, and this

redu
tion is o�set by the 2 memory a

esses required to retrieve the bit maps. Larger examples show mu
h bigger

gains. Also, note that we have shown the memory a

esses for one parti
ular pa
ket header. We need to eÆ
iently

ompute the worst-
ase number of memory a

esses a
ross all pa
ket headers.

While aggregation does often redu
e the number of memory a

esses, in some
ases a phenomenon known as false

mat
hes
an in
rease the number of memory a

esses to being slightly higher (be
ause of the time to retrieve the

aggregates for ea
h �eld) than even the normal Lu
ent bit ve
tor sear
h te
hnique.

Consider the database in Figure 3 and an aggregation size A = 2. A

1

; : : : ; A

30

are all pre�xes having the �rst

�ve bits di�erent from the �rst �ve bits of two IP addresses X and Y . Assume the arrival of a pa
ket from sour
e

X to destination Y . Thus the bit ve
tor asso
iated with the longest mat
hing pre�x in the Field 1 (sour
e) trie is

1010101 : : :101 and the
orresponding bit ve
tor in the Field 2 (destination) trie is 0101010 : : :011. The aggregate

bit ve
tors for both �elds both using A = 2 are 111 : : : 1. However, noti
e that for all the ones in the aggregate bit

ve
tor (ex
ept the last one) the algorithm wrongly assumes that there might be a mat
hing rule in the
orresponding

bit positions.

This is be
ause of what we
all a false mat
h, a situation in whi
h the result of an AND operation on an aggregate

bit returns a one but there is no valid mat
h in the group of rules identi�ed by the aggregate. This
an
learly happen

be
ause an aggregate bit set for �eld 1
orresponding to positions p; ::; p+A� 1 only means that some bit in those

positions (e.g., p + i; i < A) has a bit set. Similarly, an aggregate bit set for �eld 2
orresponding to positions

p; ::; p+A�1 only means that some bit in those positions (e.g., p+ j; j < A) has a bit set. Thus a false mat
h o

urs

when the two aggregate bits are set for the two �elds but i 6= j. The worst
ase o

urs when a false mat
h o

urs

for every aggregate bit position.

For this parti
ular example there are 30 false mat
hes whi
h makes our algorithm read 31 � 2 bits more than

the Lu
ent bit ve
tor linear sear
h algorithm. We have used an aggregation size A = 2 in our toy example, while in

pra
ti
e A will be mu
h larger. Note that for larger A, our aggregate algorithm will only read a small number of bits

more than the Lu
ent bit ve
tor algorithm even in the worst
ase.

Rule F ield

1

Field

2

F

1

X A

1

F

2

A

1

Y

F

3

X A

2

F

4

A

2

Y

F

5

X A

3

F

6

A

3

Y

F

7

X 0�

: : : : : : : : :

: : : : : : : : :

F

60

A

30

Y

F

61

X Y

Figure 3: An example of a database with two-dimensional rules for whi
h the aggregation te
hnique without rearrangement behaves poorly.

The size of the aggregate A = 2

4.3 Why rearrangement of rules
an help

Normally, in pa
ket
lassi�
ation it is assumed that rules
annot be rearranged. In general, if Rule 1 o

urs before

Rule 2, and a pa
ket
ould mat
h Rule 1 and Rule 2, one must never rearrange Rule 2 before Rule 1. Imagine the

disaster if Rule 1 says \A

ept", and Rule 2 says \Deny", and a pa
ket that mat
hes both rules get dropped instead

of being a

epted. Clearly, the problem is that we are rearranging overlapping rules; two rules are said to overlap if

there is at least one pa
ket header that
an mat
h both rules.

6

However, the results from [4℄ imply that in real databases rule overlap is rare. Thus if we know that a pa
ket

header
an never mat
h Rule 1 and Rule 2, then it
annot a�e
t
orre
tness to rearrange Rule 2 before Rule 1 (they

are, so to speak, \independent" rules). We
an use this
exibility to try to group together rules that
ontribute to

false mat
hes into the same aggregation groups, so that the
ost of false mat
hes (in terms of memory a

esses) is

redu
ed.

Better still, we
an rearrange rules arbitrarily as long as we modify the algorithm to �nd all mat
hes and then

ompute the lowest
ost mat
h. For example, suppose a pa
ket mat
hed rules Rule 17, Rule 35, and Rule 50. Suppose

after rearrangement Rule 50 be
omes the new Rule 1, Rule 17 be
omes the new Rule 3, and Rule 35 be
omes the

new Rule 6. If we
ompute all mat
hes the pa
ket will now mat
h the new rules 1, 3, and 6. Suppose we have

pre
omputed an array that maps from new rule order number to old rule order number (e.g., from 1 to 50, 3 to 17,

et
.). Thus in time proportional to the number of mat
hes, we
an �nd the \old rule order number" for all mat
hes,

and sele
t the earliest rule in the original order. On
e again the
ru
ial assumption to make this eÆ
ient is that the

number of worst-
ase rules that mat
h a pa
ket is small. Note also that it is easy (and not mu
h more expensive in

the worst-
ase) to modify a bit ve
tor s
heme to
ompute all mat
hes.

For example, rearranging the rules in the database shown in the database in Figure 3, we obtain the rearranged

database shown in Figure 4. If we return to the example of pa
ket header (X , Y), the bit ve
tors asso
iated with

the longest mat
hing pre�x in the new database will be:111 : : :11000 : : :0 and 000 : : :01111 : : :1 having the �rst 31

bits 1 in the �rst bit ve
tor and the last 31 bits 1 in the se
ond bit ve
tor. However, the result of the AND operation

on the aggregate has the �rst bit 1 in the position 16. This makes the number of bits ne
essary to be read for the

aggregate s
heme to be 16� 2 + 1� 2 = 34 whi
h is less than the number of the bits to be read for the s
heme

without rearrangement: 31� 2 = 62.

The main intuition in Figure 4 versus Figure 3 is that we have \sorted" the rules by �rst rearranging all rules

that have X in Field 1 to be
ontiguous; having done so, we
an rearrange the remaining rules to have all values in

Field 2 with a
ommon value to be together (this is not really needed in our example). What this does is to lo
alize

as many mat
hes as possible for the sorted �eld to lie within a few aggregation groups instead of having mat
hes

dispersed a
ross many groups.

Thus our paper has two major
ontributions. Our �rst
ontribution is the idea of using aggregation whi
h, by

itself, redu
es the number of memory a

esses by more than an order of magnitude for real databases, and even for

syntheti
ally generated databases where the number of false mat
hes is low. Our se
ond
ontribution is to show how

an one redu
e the number of false mat
hes by a further order of magnitude by using rule rearrangement together

with aggregation. We also have a third
ontribution that shows how to make updates faster using aggregated bit

maps. In the rest of the paper, we des
ribe our s
hemes more pre
isely and provide experimental eviden
e that shows

their eÆ
a
y.

Rule F ield

1

Field

2

F

1

X A

1

F

2

X A

2

F

3

X A

3

: : : : : : : : :

F

30

X A

30

F

31

X Y

F

32

A

1

Y

F

33

A

2

Y

: : : : : : : : :

F

60

A

29

Y

F

61

A

30

Y

Figure 4: An example of rearranging the database in �gure 3 in order to improve the performan
e of the aggregation te
hnique. The size of

the aggregate A = 2

7

5 The ABV Algorithm

In this se
tion we des
ribe our new ABV algorithm. We start by des
ribing the algorithm with aggregation only. We

then des
ribe the algorithm with aggregation and rearrangement.

5.1 Aggregated Sear
h

We start by des
ribing more pre
isely the basi
 algorithm for a two level hierar
hy (only one aggregate bit ve
tor)

and without rearrangement of rules.

For the general k-dimension pa
ket
lassi�
ation problem our algorithm uses the N rules of the
lassi�er to

pre
ompute k tries, T

i

, 1 � i � k. A trie T

i

is asso
iated with �eld i from the rule database; it
onsists of a trie built

on all possible pre�x values that are found in �eld i in any rule in the rule database.

Thus a node in trie T

i

is asso
iated with a valid pre�x P if there is at least one rule R

l

in the
lassi�er having

R

l

i

= P , where R

l

i

is the pre�x asso
iated with �eld i of rule R

l

. For ea
h su
h node two bit ve
tors are allo
ated.

The �rst one has N bits and is identi
al to the one that is assigned in the BV algorithm. Bit j in this ve
tor is set

if and only if rule R

j

in the
lassi�er has P as a pre�x of R

j

i

. The se
ond bit ve
tor is
omputed based on the �rst

one using aggregation. Using an aggregation size of A, a bit k in this ve
tor is set if and only if there is at least one

rule R

n

, A� k � n � A� k + 1� 1 for whi
h P is a pre�x of p

n

i

. The aggregate bit ve
tor has d

N

A

e bits.

When a pa
ket arrives at a router, a longest pre�x mat
h is performed for ea
h �eld H

i

of the pa
ket header in

trie T

i

to yield a trie node N

i

. Ea
h node N

i

ontains both the bit ve
tor (N

i

:bitV e
tor) and the aggregate ve
tor

(N

i

:aggregate) spe
ifying the set of �lters or rules whi
h mat
hes pre�x H

i

on the dimension i. In order to identify

the subset S of �lters whi
h are a mat
h for the in
oming pa
ket, the AND of N

i

:aggregate is �rst
omputed.

Whenever position j is 1 in the AND of the aggregate ve
tors, the algorithm performs an AND operation on the

regular bit ve
tors for ea
h
hunk of bits identi�ed by the aggregate bit j (bits A� j; : : : ; A� (j + 1)� 1). If a value

of 1 is obtained for bit m, then the rule R

m

is part of set S. However, the algorithm sele
ts the rule R

t

with the

lowest value of t.

Thus the simplest way to do this is to
ompute the mat
hing rules from the smallest position to the largest, and

to stop when the �rst element is pla
ed in S. We have implemented this s
heme. However, in what follows we prefer

to allow arbitrary rearrangement of �lters. To support this, we instead
ompute all mat
hes. We also assume that

ea
h rule is asso
iated with a
ost (that
an easily be looked up using an array indexed by the rule position) that

re
e
ts its position before rearrangement. We only return the lowest
ost (i.e.. the �lter with the smallest position

number in the original database
reated by the manager) �lter. As des
ribed earlier, this simple tri
k allows us to

rearrange �lters arbitrarily without regard for whether they interse
t or not.

The pseudo
ode for this implementation is:

1 Get Pa
ket P (H

1

; : : : ; H

k

);

2 for i 1 to k do

3 N

i

 longestPrefixMat
hNode(Trie

i

; H

i

);

4 Aggregate 11 : : : 1;

5 for i 1 to k do

6 Aggregate Aggregate

T

N

i

:aggregate;

7 BestRule Null;

8 for i 0 to sizeof(Aggregate)� 1 do

9 if Aggregate[i℄ == 1 then

10 for j 0 to A� 1 do

11 if

T

k

l=1

N

l

:bitV e
t[i�A+ j℄ == 1 then

12 if R

i�A+j

:
ost < BestRule:
ost then

13 BestRule = R

i�A+j

;

14 return BestRule;

8

5.2 A Sorting Algorithm for Rearrangement

One
an see that false mat
hes redu
e the performan
e of the algorithm introdu
ed in the previous se
tion, with lines

10 . . 13 in the algorithm being exe
uted multiple times. In this se
tion, we introdu
e a s
heme whi
h rearranges

the rules su
h that, wherever possible, multiple �lters whi
h mat
h a spe
i�
 pa
ket are pla
ed
lose to ea
h other.

The intent, of
ourse, is that these multiple mat
hing �lters are part of the same aggregation group. Note that the

ode of the last se
tion allows us to rearrange �lters arbitrarily as long as we retain their
ost value.

Re
all that Figure 4 was the result of rearranging the original �lter database from Figure 3 by grouping together

the entries having X as a pre�x on the �rst �eld and then the entries having Y as a pre�x in the se
ond �eld. After

rearranging entries, a query to identify the �lter whi
h mat
hes the header (X;Y) of a pa
ket takes about half the

time it would take before rearrangement. This is be
ause regrouping the entries redu
es the number of false mat
hes

to zero.

To gain some intuition into what optimal rule arrangement should look like, we examined four real life �rewall

databases. We noti
ed that there were a large number of entries having pre�xes of either length 0 or 32. This

suggests a simple idea: if we arbitrarily pi
k a �eld and group together �rst the entries having pre�xes of length 0

(su
h wild
ard �elds are very
ommon), then the pre�xes of length 1, and so on until we rea
h a group of all size 32

pre�xes. Within ea
h group of similar length pre�xes, we sort by pre�x value, thereby grouping together all �lters

with the same pre�x value. This will
learly (for the �eld pi
ked) pla
e all the wild
ard �elds together, and all the

length 32 pre�xes together. Intuitively, this rule generalizes the transformation from Figure 3 to Figure 4. In the

rest of the paper, we refer to this pro
ess of rearrangement as sorting on a �eld.

Suppose we started by sorting on �eld i. There may be a number of �lters with pre�x X . Of
ourse, we
an

ontinue this pro
ess re
ursively on some other �eld j, by sorting all entries
ontaining entry X using the same

pro
ess on �eld j. (This
learly leaves the sorting on �eld i un
hanged.)

Our te
hnique of moving the entries in the database
reates large areas of entries sharing a
ommon subpre�x in

one or more �elds. If there are entries having �elds sharing a
ommon subpre�x with di�erent lengths, it separates

them at a
omfortable distan
e su
h that false mat
hes are redu
ed.

A question ea
h rearrangement s
heme should address is
orre
tness. In other words, for any pa
ket P and any

�lter database C whi
h, after rearrangement is transformed into a database C

0

, the result of the pa
ket
lassi�
ation

problem having as entries both (C;P) and (C

0

; P) should be the same. One
an see that the ABV algorithm

guarantees this be
ause an entry is sele
ted based on its
ost. Note that (by
ontrast) in the BV s
heme an entry is

sele
ted based on its position in the original database.

Our rearranging s
heme uses a re
ursive pro
edure whi
h
onsiders the entries from a subse
tion of the original

database identi�ed through the first and last element. The rearrangement is based on the pre�xes from the �eld

ol provided as an argument. The pro
edure groups the entries based on the length of the pre�xes; for example �rst

it
onsiders the pre�xes from �eld 1, and
reates a number of groups equal to the number of di�erent pre�x lengths

in �eld 1. Ea
h group is then sorted so that entries having the same pre�x are now adja
ent. The entries having the

same pre�x then
reate subgroups; the pro
edure
ontinues for ea
h subgroup using the next �elds that needs to be

onsidered; the algorithm below
onsiders �elds in order from 1 to k. Note that one
ould attempt to optimize by

onsidering di�erent orders of �elds to sort. We have not done so yet be
ause our results seem good enough without

this further degree of optimization.

A pseudo
ode des
ription of the algorithm is given below. The algorithm is
alled initially by setting the param-

eters first = 1; last = N;
ol = 1

Arrange-Entries(first; last;
ol)

1 if(there are no more �elds) or (first == last) then return;

2 for (ea
h valid size of pre�xes) then

3 group all the elements with the same size together;

4 sort the previously
reated groups. Create subgroups made up

of elements having the same pre�xes on the �eld
ol

5 for (ea
h subgroup S with more than two elements) then

6 Arrange-Entries(S:first; S:last;
ol + 1);

9

6 Evaluation

In this se
tion we
onsider how the ABV algorithm
an be implemented, and how it performs on both real �re-

wall databases and syntheti
ally
reated databases. Note that we need syntheti
ally
reated databases to test the

s
alability of our s
heme be
ause real �rewall databases are quite small.

First, we
onsider the
omplexity of the prepro
essing stage and the storage requirements of the algorithm. Then,

we
onsider the query performan
e and we relate it to the performan
e of the BV algorithm. The speed measure

we use is the worst
ase number of memory a

esses to be exe
uted a
ross all possible pa
ket headers. Fortunately,

omputing this number does not entail generating all possible pa
ket headers. This is be
ause pa
ket headers fall

into equivalen
e
lasses based on distin
t
ross-produ
ts [15℄; a distin
t
ross-produ
t is a unique
ombination of

distin
t pre�x values for ea
h header �eld.

Sin
e ea
h pa
ket that has the same
ross-produ
t is mat
hed to the same node N

i

(in trie T

i

) for ea
h �eld i, ea
h

pa
ket that has the same
ross-produ
t will behave identi
ally in both the BV and ABV s
hemes. Thus it suÆ
es

to
ompute worst
ase sear
h times for all possible
ross-produ
ts. Our �rst algorithm was quite time
onsuming

for large rule databases of around 20,000 rules (one test run
an take 6 hours on a modern SPARC), it is feasible.

Note also that su
h long
omputation time is only required for testing the worst-
ase performan
e of the algorithms,

and not for the prepro
essing or running of the a
tual algorithm itself. However, we have re
ently improved the

algorithm by several orders of magnitude (order of minutes) by using a
lever idea exploited in the RFC s
heme [4℄

to equivalen
e
ross-produ
ts while
omputing
rossprodu
ts pairwise. We have a number of other ideas to speed up

the testing to what we believe are se
onds. With the new algorithm in pla
e we hope to test mu
h larger databases

of up to a million rules.

One
an easily see that be
ause of possible false mat
hes in the rule database, our ABV algorithm may (in theory)

have a poorer worst behavior than BVS (be
ause it
an potentially retrieve all aggregates as well as all bits in the bit

ve
tors). However through our experiments we show that ABV outperforms BV by more than an order of magnitude

on both real life databases and syntheti
 databases. We tried to
reate syntheti
 databases by randomly inje
ting

elements (e.g., wild
ards) whi
h exa
erbate false mat
hes in order to stress ABV as mu
h as we
ould. Despite this,

ABV performed well, as we show below.

6.1 ABV Prepro
essing

We
onsider the general
ase of a k dimension
lassi�er. k tries T

i

, 1 � i � k are built, one for ea
h dimension. Ea
h

trie has two di�erent types of nodes depending if they are asso
iated or not with valid pre�xes. The total number of

nodes in the tries is on the order of O(N � k), where N is the number of entries in the
lassi�er (i.e., rule database).

Two bit ve
tors are asso
iated with ea
h valid pre�x node. One bit ve
tor is identi
al with the one used in BV s
heme

and requires d

N

WordSize

e words of data. The se
ond bit ve
tor is the aggregate of the �rst one; it
ontains d

N

A

e bits

of data whi
h means that it requires d

N

A�WordSize

e words of memory (A is the size of the aggregate). Building both

bit ve
tors requires an O(N) pass through the rule database for ea
h valid node of the trie. Thus the prepro
essing

time is O(N

2

k).

One
an easily see from here that the memory requirements for ABV are slightly higher than that of BVS; however

for an aggregate size greater than 32 (e.g., software), ABV di�ers by less than 3%, while for an aggregate size of 500

(e.g., hardware), it is below 0:2%.

The time required for insertion or the deletion of a rule in ABV is of the same
omplexity as BV. This is be
ause

the aggregate bit ve
tor is updated ea
h time the asso
iated bit ve
tor is updated. Note that updates
an be

expensive be
ause adding a �lter with a pre�x X
an potentially
hange the bit maps of several nodes. However, in

pra
ti
e it is rare to see more than a few bitmaps
hange, possibly be
ause �lter interse
tion is quite rare [4℄. Thus

in
remental update, though slow in the worst
ase, is quite fast on the average. In the last se
tion, we des
ribe a

modi�ed algorithm that
an guarantee better worst-
ase update times.

6.2 Experimental Platform

We used two di�erent types of databases. First we used a set of four industrial �rewall databases that we obtained

from earlier resear
hers. For priva
y reasons we are not allowed to dis
lose the name of the
ompanies or the a
tual

databases. Ea
h entry in the database
ontains a 5 � tuple (sour
e IP pre�x, destination IP pre�x, sour
e port

10

number(range), destination port number(range), proto
ol). We
all these databases DB

1

: : : DB

4

. The database

hara
teristi
s are presented in Table 5.

Filter No:ofRules No:ofRulesinPrefixFormat

DB

1

266 1640

DB

2

279 949

DB

3

183 531

DB

4

158 418

Figure 5: The sizes of the �rewall databases we use in the experiments

The third and fourth �eld of the database entries are represented by either port numbers or range of port numbers.

We
onvert them to valid pre�xes using the te
hnique des
ribed in [15℄.

The following
hara
teristi
s have important e�e
ts on the results of our experiments:

1. Most pre�xes have either a length of 0 or 32. There are some other pre�xes with length of 21; 23; 24 and 30.

2. No pre�x
ontains more than 4 mat
hing rules for ea
h �eld.

3. The destination and sour
e pre�x �elds in roughly half the rules were wild
arded (by
ontrast, [3℄ only assumes

at most 20% of the rules have wild
ards in their experiments), and roughly half the rules have >= 1024 in the

port number �elds. Thus the amount of overlap within ea
h dimension was large.

4. No pa
ket mat
hes more than 4 rules.

The se
ond type of databases are randomly generated 2 �eld (sometimes
alled two dimensional) databases using

random sele
tion from �ve publi
ly available routing tables ([7℄). We used the snapshot of ea
h table taken on

September 12, 2000. An important
hara
teristi
 of these tables is the pre�x length distribution, des
ribed in the

table 6

RoutingTable 8 9 : : : 15 16 17 : : :23 24 25 : : : 32

Mae�East 10 133 1813 9235 11405 58

Mae�West 15 227 2489 11612 16290 39

AADS 12 133 2204 10144 14704 55

Pa
Bell 12 172 2665 12808 19560 54

Paix 22 560 6584 28592 49636 60

Figure 6: Pre�x Length Distribution in the routing tables, September 12, 2000

Re
all that the problem is to generate a syntheti
 database that is larger than our sample industrial databases

to test the s
alability of the ABV and BVS algorithms. The simplest way to generate a two-dimensional
lassi�er

on sour
e and destination pre�xes of size N , for varying values of N , would be as follows. We pi
k randomly two

pre�xes from any of the �ve routing tables, one for the sour
e �eld and one for the destination �eld. We now iterate

this pro
edure N times to
reate N rules, for any spe
i�ed value of N .

Unfortunately, su
h a simple generation te
hnique may be unrealisti
. This is be
ause the real routing databases

([7℄) have either no or at most one pre�x of length 0. Thus if we use random sele
tion from a routing table of say

80,000 pre�xes, we are very unlikely to generate a rule that has a zero length pre�x in either �eld. We have already

noted that zero length pre�xes are very
ommon in real �rewall rule databases. Thus, in addition to random sele
tion

from a routing table, we also allow a
ontrolled inje
tion of rules with zero length pre�xes, where the inje
tion is

ontrolled by a parameter that determines the per
entage of zero length pre�xes. For example, if the parameter

spe
i�es that 20% of the rules have a zero length pre�x, then in sele
ting a sour
e or destination �eld for a rule, we

�rst pi
k a random number between 0 and 1; if the number is less than 0:2 we simply return the zero length pre�x;

else, we pi
k a pre�x randomly from the spe
i�ed routing table.

A similar
onstru
tion te
hnique is also used in [3℄ though they limit wild
ard inje
tion to 20% when our �rewall

databases have the number of wild
ards in a �eld to be
loser to 50%. [3℄ also uses another te
hnique based on

11

extra
ting all pairs of sour
e-destination pre�xes from tra
es and using these as �lters. They show that the two

methods di�er
onsiderably with the random sele
tion method providing better results be
ause the tra
e method

produ
es more overlapping pre�x pairs. We realize that; however, rather than using a tra
e, we prefer to stress ABV

further by adding a
ontrolled inje
tion of groups of pre�xes that share a
ommon pre�x to produ
e more overlapping

pre�x pairs (see next paragraph). Indeed, our se
ond method stresses ABV more, as is
onsistent with [3℄; we prefer

the
ontrolled inje
tion be
ause it allows us to investigate the e�e
t of varying the inje
tion rate rather than being

limited to that provided by a tra
e.

We do vary the wild
ard inje
tion parameter and see how ABV performs as we in
rease the per
entage of zero

length pre�x rules. However, we also have another knob that
an stress ABV further by in
reasing the degree of

rules that a given rule overlaps with. It is easy to see that groups of pre�xes that share a
ommon subpre�x are

ru
ial for in
reasing false mat
hes. Now in pra
ti
e, su
h pre�xes should be very rare; su
h pre�xes o

ur very

rarely in the databases in [7℄. Thus random sele
tion will not
reate many su
h pre�xes.However, to arti�
ially stress

ABV, we found a te
hnique to randomly
reate databases whi
h have a potentially large number of pre�xes that

have subpre�xes (e.g., the sequen
e *, 1*, 10*, 101* is a sequen
e of pre�xes, ea
h of whi
h is a subpre�x of later

pre�xes in the sequen
e).

When we inje
t a large amount of zero length pre�xes and subpre�xes, we �nd that ABV without rearrangement

begins to do quite poorly, a partial
on�rmation that we are stressing the algorithm. Fortunately, ABV with

rearrangement still does very well.

Finally, we did some limited testing on syntheti
 5-dimensional databases. We generated the sour
e and destina-

tion �elds of rules as in the syntheti
 2-dimensional
ase; for the remaining �elds (e.g., ports) we pi
ked port numbers

randomly a

ording to the distribution found in our larger real database. On
e again, we �nd that ABV s
ales very

well
ompared to Lu
ent. We will report more
omplete testing on su
h 5-dimensional �elds in the full paper.

6.3 Performan
e Evaluation on Industrial Firewall Databases

We experimentally evaluate ABV algorithm on a number of four industrial �rewall databases des
ribed in the �gure

5. The rules in the databases are
onverted into pre�x format using the te
hnique des
ribed in [9℄ . The memory

spa
e that is used by ea
h of them
an be estimated based on the number of nodes in the tries, and the number

of nodes asso
iated with valid pre�xes. We provide these values in Figure 7. A node asso
iated with a valid pre�x

arries a bit ve
tor of size equal to d

N

32

e words and an aggregate bit ve
tor of size d

N

32�32

e words. We used a word

size equal to 32; we also set the size of the aggregate to 32. We used only one level of aggregation.

Our performan
e results are summarized in Figure 8. We
onsider the number of memory a

esses required by

the ABS algorithm on
e the nodes asso
iated with the longest pre�x mat
h are identi�ed in the trie in the worst
ase

s
enario. The �rst stage of �nding the nodes in the tries asso
iated with the longest pre�x mat
hing is identi
al in

both algorithms ABV and BVS (and depends on the longest pre�x mat
h algorithm used; an estimate for the fastest

algorithms is around 3 � 5 memory a

esses per �eld). Therefore we do not
onsider it in our measurements. The

size of a memory word is 32 bits for all the experiments we
onsidered. Note that in a hardware implementation it

is quite easy to have a value of about 500 bits/word, using a wide internal bus.

The results show that ABV without rearrangement outperforms BVS, with the number of memory a

esses being

redu
ed by a fa
tor of 27% : : : 54%. By rearranging the elements in the original database, the performan
e of ABV

an be in
reased by further redu
ing the number of memory a

esses by a fa
tor of 40% : : : 75%. Our results also

show that for the databases we
onsidered it was suÆ
ient to sort the elements only by the size of the pre�x length

in one �eld (and not re
ursively sort using other �elds).

Filter No.of Nodes No. of Valid Pre�xes

DB

1

980 188

DB

2

1242 199

DB

3

805 127

DB

4

873 143

Figure 7: The total number of nodes in the tries and the total number of nodes asso
iated with valid pre�xes for the industrial �rewall

databases

12

Filter BVS ABV

unsorted One Field Sorted Two Fields Sorted

DB

1

260 120 75 65

DB

2

150 110 50 50

DB

3

85 60 50 50

DB

4

75 55 45 45

Figure 8: The total number of memory a

esses in the worst
ase s
enario for the industrial �rewall databases. Several
ases are taken into

onsideration: unsorted database (no rearrangement), database sorted one �eld only, and sorted on two �elds.

6.4 Experimental Evaluation on Syntheti
 2D Databases

Thus on real �rewall databases our ABV algorithm outperforms the BVS algorithm. However, for small databases

the improvement we
an obtain is limited. We also need to evaluate the s
alability of our algorithm. In this se
tion

we evaluate how our algorithm might behave with larger
lassi�ers. Thus we are for
ed to syntheti
ally generate

larger databases.

However, the size of a
lassi�er is not the only parameter one needs to
onsider. If we had
onsidered only the

size of the
lassi�er and the a
tual
hara
teristi
s of the
lassi�ers (as we found in the four real databases) to have

most of pre�xes grouped in two di�erent groups, one with a length of 0 and another one with a length of 32, than

our results would look impressive. In su
h databases, false mat
hes are very rare. Thus, as said earlier, we inje
ted

a
ontrolled number of zero length pre�xes as well as a number of pre�xes that had subpre�xes.

As des
ribed earlier, we
reate our syntheti
 two-dimensional database of pre�xes from routing tables available

for publi
 at [7℄. The
hara
teristi
s of the routing tables we used are listed in Figure 6.

E�e
t of zero-length pre�xes: We �rst
onsider the e�e
t of pre�xes of length zero on the number of memory

a

esses in the worst
ase s
enario. Entries
ontaining pre�xes of length zero are randomly generated as des
ribed

earlier. The results are displayed in Figure 9. The presen
e of pre�xes of length zero randomly distributed through

the entire database has a heavy impa
t on the number of memory a

esses whi
h are done to serve a query. If there

are no pre�xes of length zero in our syntheti
 database the number of memory a

esses for a query using ABV s
heme

is a fa
tor of 8 : : : 27 times less than the BV s
heme.

However, by inserting around 20% pre�xes of length zero in the database we found that the ABV s
heme (without

rearrangement) needs to read all the words from both the aggregate and the bit ve
tor; in su
h a s
enario,
learly the

BV s
heme does better by a small amount. Fortunately, by sorting the entries in the database using the te
hnique

des
ribed in Se
tion 5.2, the number of memory a

esses for the worst
ase s
enario for ABV s
heme is redu
ed to

values
lose to the values of a database (of the same size) without pre�xes of length zero.

Figure 10 shows the distribution of the number of memory a

esses as a fun
tion of number of entries in the

syntheti
 database. The databases are generated using randomly pi
ked pre�xes from the MAE-East routing table,

and by random inje
tion of pre�xes of length zero. Note that the sorted ABV s
heme redu
es the number of memory

a

esses by more than 20 times
omparing with BVS s
heme, with the di�eren
e growing larger as the database size

gets larger.

Inje
ting Subpre�xes: A se
ond feature whi
h may dire
tly a�e
t the overall performan
e of our algorithm is the

presen
e of entries having pre�xes whi
h share
ommon subpre�xes. These entries form groups of nodes asso
iated

with valid pre�xes whi
h share a
ommon subpre�x. These groups e�e
tively
reate subtries. The root of ea
h subtrie

is the longest
ommon subpre�x of the group. Let W be the depth of the subtrie, and
onsider a �lter database with

k dimensions. It is not hard to see that if we wish to stress the algorithm, we need to in
rease W .

Our next experiment attempts to measure the e�e
t of su
h pre�xes on the overall performan
e of the ABV

algorithm. We randomly insert elements from 20 di�erent su
h groups. In order to do so, we �rst extra
t a set of

20 pre�xes having length equal to 24. We
all this set L. There are no two elements in L whi
h share the same

16�bit pre�x. On the se
ond step, for ea
h element in L we insert eight other elements with the length in the range

(24�W) : : : 23. These elements are subpre�xes of the element in L.

We generate the �lter database by randomly pi
king pre�xes from both the routing table and from the new

reated set L. We
an
ontrol the rate with whi
h elements from L are inserted in the �lter database. We measure

the e�e
t of di�erent tries heights W as well as the e�e
t of having di�erent ratios of su
h elements. The results are

displayed in Figures 11, 12, and 13.

13

Size DB BVS Per
entage of pre�xes of length zero; sorted(s)/usorted(u)

0 1u 1s 2u 2s 5u 5s 10u 10s 20u 20s 50u 50s

1K AADS 64 8 18 8 24 8 48 12 66 10 66 10 66 10

1K EAST 64 8 12 10 26 10 54 10 66 12 66 12 66 10

1K WEST 64 6 12 8 24 10 56 10 62 12 66 10 66 10

1K PB 64 6 12 10 24 8 48 10 64 10 66 8 66 10

1K PAIX 64 8 12 8 24 10 48 10 66 10 66 8 66 10

2K AADS 126 10 24 12 32 12 86 14 118 14 130 12 130 12

2K EAST 126 10 28 14 58 12 84 14 126 14 130 14 130 14

2K WEST 126 10 28 12 38 12 80 12 126 12 130 12 130 12

2K PB 126 10 22 12 42 12 86 12 126 12 130 14 130 14

2K PAIX 126 10 18 12 40 10 86 12 126 12 130 14 130 14

5K AADS 314 16 50 18 86 20 216 20 306 22 324 20 324 20

5K EAST 314 16 50 18 76 18 216 20 298 20 324 22 324 18

5K WEST 314 16 48 18 114 20 224 18 310 20 324 20 324 20

5K PB 314 16 38 18 72 20 226 18 304 22 324 20 324 20

5K PAIX 314 16 40 20 100 20 226 18 310 18 324 18 324 18

10K AADS 626 26 92 30 186 28 426 28 600 30 646 32 646 32

10K EAST 626 26 78 30 196 28 426 34 588 34 644 32 646 30

10K WEST 626 26 82 30 146 28 420 28 594 28 646 30 646 30

10K PB 626 26 82 30 146 28 432 30 610 28 646 30 646 30

10K PAIX 626 26 78 28 146 28 432 30 610 30 646 30 646 28

20K AADS 1250 48 158 50 332 52 832 52 1202 50 1292 50 1292 50

20K EAST 1250 48 148 48 346 50 860 52 1212 54 1288 52 1292 52

20K WEST 1250 48 156 50 296 50 806 48 1228 54 1290 52 1292 52

20K PB 1250 46 138 52 336 50 858 52 1186 52 1290 52 1292 50

20K PAIX 1250 46 158 48 336 48 878 52 1200 54 1292 52 1292 52

Figure 9: The total number of memory a

esses in the worst
ase s
enario for syntheti
 two-dimensional database of various sizes, with a

variable per
entage of pre�xes with length zero.

The �gures shows that, at least for a model of random insertion the height W does not have a large impa
t on

the number of false mat
hes. A slight in
rease in this number
an be seen only when there are about 90% of su
h

elements inserted in the measured database. We
onsider next the ratio of these elements in the total number of

pre�xes in the database. Their impa
t on the total number of memory a

esses is lower than the impa
t of pre�xes of

length zero. When their per
entage is roughly 50%, the number of memory a

esses using ABV algorithm (without

sorting) is about 10 times lower than the number of memory a

esses using the BVS algorithm. This number is

further improved by sorting the original database by a fa
tor of about 30%. These numbers were for a database with

20K entries.

6.4.1 Evaluating ABV with Two Levels of Aggregation

So far our version of ABV for 2D databases has used only 1 level of aggregation. Even for a 32; 000 rule database,

we would use an aggregate bit ve
tor of length equal to 32; 000=32 = 1000. However, if only a few bits are set in

su
h an aggregate ve
tor, it is a waste of time to s
an all 1000 bits. The natural solution, for aggregate bit ve
tors

greater than A

2

(1024 in our example), is to use a se
ond level of hierar
hy. With A = 32, a se
ond level
an handle

rule databases of size equal to 32

3

= 32K. Sin
e this approa
hes the limits of the largest database that we
an test

(for worst-
ase performan
e), we
ould not examine the use of any more levels of aggregation.

To see whether 2 levels provides any bene�t versus using 1 level only, we simulate the behavior of the 2 level

ABV algorithm on our larger syntheti
 databases. (It makes no sense to
ompare the performan
e of 2 levels versus

one level for our small industrial databases.). For la
k of spa
e, in Figure 14 we only
ompare the performan
e of

two versus one level ABV on syntheti
 databases (of sizes 5000, 10000, and 20000) generated from MAE-EAST by

14

0.0K 5.0K 10.0K 15.0K 20.0K

num. of entries

0.0

500.0

1000.0

1500.0

n
u

m
.
o

f
m

e
m

o
ry

 a
c
c
e
s
s
e
s

Number of Memory Accesses = f (number of entries), MAE−EAST

Percentage of stars = 0..50%, entries sorted/unsorted

star = 0, unsort
star = 0, sort
star = 1, unsort
star = 1, sort
star = 2, unsort
star = 2, sort
star = 5, unsort
star = 5, sort
star = 10, unsort
star = 10, sort
star = 20, unsort
star = 20, sort
star = 50, unsort
star = 50, sort

Figure 10: The number of memory a

esses as a fun
tion of number of database entries. ABV outperforms BVS s
heme by a fa
tor greater

than twenty on a sorted syntheti
 database having pre�xes of length zero randomly inserted. The syntheti
 databases were generated using the

MAE-EAST routing table [7℄

inje
ting 0% to 50% pre�xes of zero length. In all
ases we use the ABV algorithm with rearrangement (i.e., the best

ase for both one and two levels).

The results show that using an extra level of aggregation redu
es the worst number of memory a

esses by 60%

for the largest databases. For the smallest database (5000) the improvement is marginal, whi
h a

ords with our

intuition | although the algorithm does not tou
h as many leaf bits for the database of size 5000, this gain is o�set

by the need to read another level of aggregate bits. However, at a database size of 10,000 there is a
lear gain. While

we need mu
h more work to validate our hypothesis, the results do suggest that the number of memory a

esses for

a general multilevel ABV
an s
ale logarithmi
ally with the size of the rule database, allowing potentially very large

databases.

6.5 Performan
e Evaluation using Syntheti
 5-dimensional databases

So far, we have tested s
alability only on randomly generated 2-dimensional database. However, there are existing

s
hemes su
h as grid-of-tries and FIS trees that also s
ale well for this spe
ial
ase. Thus in this se
tion we brie
y

des
ribe initial results of our tests for syntheti
 5-dimensional databases. The testing is still not
omplete be
ause

we only re
ently improved our test methodology to
he
k the worst
ase (note that for 5 dimensions the number of

rossprodu
ts grow as N

5

and so even very small databases of size 5000 were hard to do). However, with the re
ent

use of ideas in [4℄ we were able to
ut down testing time and obtain the following promising results. We will expand

on the
omplete set of results in the �nal paper.

We investigated the s
alability of the ABV s
heme on �ve dimensional databases. The industrial �rewall databases

we use have a maximum size of 1640 rules whi
h limits the possibility to be used in order to show the s
alability of

our s
heme. To avoid this limitation we generated syntheti
 generated �ve dimension databases using the IP pre�x

addresses from MAE-EAST as in the two-dimensional
ase, and port number ranges and proto
ol �elds using the

distributions of values and ranges found in the industrial �rewall databases.

15

Size DB BVS W = 4 W = 6 W = 8

1 10 20 50 90 1 10 20 50 90 1 10 20 50 90

1K AADS 64 8 12 18 38 48 8 14 18 36 54 8 12 18 38 52

1K EAST 64 8 10 20 40 52 8 12 26 38 56 8 12 20 36 52

1K WEST 64 8 12 18 36 52 8 14 22 34 52 8 10 18 36 56

1K PB 64 8 14 16 38 50 6 12 16 36 50 8 10 20 38 54

1K PAIX 64 6 12 18 38 50 8 12 16 38 50 8 10 20 38 52

5K AADS 314 16 30 54 134 152 16 28 56 132 156 16 28 62 134 154

5K EAST 314 16 28 56 124 144 16 32 56 126 148 16 30 50 120 162

5K WEST 314 16 34 48 124 158 16 34 56 124 154 16 38 56 130 158

5K PB 314 16 32 58 134 154 16 32 58 134 152 18 30 52 130 188

5K PAIX 314 16 32 50 138 174 16 30 56 144 170 16 32 48 136 172

10K AADS 626 26 52 98 232 202 26 50 96 192 226 26 50 92 214 236

10K EAST 626 28 54 96 228 214 26 50 96 244 234 26 50 94 194 226

10K WEST 626 28 50 96 186 246 26 52 104 230 214 26 50 86 196 222

10K PB 626 26 52 94 198 230 28 54 104 212 208 26 58 98 202 232

10K PAIX 626 26 52 96 208 262 26 50 96 204 258 26 52 90 222 234

20K AADS 1250 48 94 172 234 306 46 88 170 352 310 48 92 156 300 320

20K EAST 1250 48 88 168 308 254 48 90 154 274 292 48 92 176 304 326

20K WEST 1250 48 102 164 284 274 48 96 176 352 300 48 96 178 334 304

20K PB 1250 48 92 168 354 280 48 94 172 280 288 48 90 168 286 280

20K PAIX 1250 48 96 180 306 318 46 94 178 274 312 48 86 172 290 280

Figure 11: The total number of memory a

esses in the worst
ase s
enario for a syntheti
 two-dimension database having inje
ted a variable

per
entage of elements whi
h share a
ommon subpre�x. The database is not sorted. W is is the depth of the subtrie
reated by these elements.

The values under the BVS estimates the number of memory a

esses using the BV s
heme. All the other values are asso
iated with the ABV

s
heme.

Our results are shown in Figure 15in whi
h the ABV s
heme outperforms the BVS s
heme by more than one order

of magnitude. The only results we have shown use no wild
ard inje
tion. The results for larger wild
ard inje
tions

appear to be similar to before (though sorting on possible multiple �elds appears to be even more
ru
ial). Note

that for a 5 dimensional database with 21,226 rules the Lu
ent s
heme required 3320 memory a

esses while ABV

with an aggregation size of 32 required only 140 memory a

esses.

7 Theoreti
al Worst Case Bounds for ABV

We try to �nd an upper bound for the maximum number of memory a

esses in the worst
ase for the ABV algorithm

for a K �eld, N rules
lassi�er fR

i

g

0�i�N�1

. To get an intuition let's
onsider �rst the �gure 16. The pattern on

the left identi�es a 2 dimension sorted database. For simpli
ity we assume that the maximum length of the pre�xes

is 4. One
an easily noti
e that a pa
ket with a header (X,Y) does not �nd any mat
h in this database on
e X starts

with an 0 and Y starts with an 1. However there are a number of at least four false mat
hes if an ABV s
heme is

used and the aggregate window size is equal with 2. Let's
onsider now a sorted 3 dimension �lter database like the

one shown on the right in �gure 16 having four di�erent lengths of pre�xes and a pa
ket with the header �elds (Z,

X, Y). There is no mat
hing �lter for this pa
ket in the database, however in the ABV s
heme there is a number of

4� 4 = 16 false mat
hings. Generalizing the observation above:

Lema 1 There is a K dimension database with the number of di�erent length of pre�xes equal with W for whi
h

under a
onveniently
hosen aggregation window the number of false mat
hes is 2�W

k�1

� 1 and this is maximum.

Proof 1 The proof is by indu
tion. Let T (k) the maximum number of false mat
hes for a database with k dimensions

and W di�erent pre�x lengths. For k = 2, T (2) = 2�W � 1 a false mat
h may exist both between entries having the

same pre�x length on the �rst dimension or between entries having adja
ent pre�x lengths on the �rst dimension. For

the general
ase, T (k) =W �T (k�1)+(W �1) whi
h
an be immediately shown that implies T (k) = 2�W

k�1

�1.

16

Size DB W = 4 W = 6 W = 8

1 10 20 50 90 1 10 20 50 90 1 10 20 50 90

1K AADS 8 10 14 32 48 8 12 18 32 52 8 12 16 36 56

1K EAST 6 12 16 34 54 8 12 18 36 48 8 12 16 36 48

1K WEST 8 10 14 32 46 8 10 18 34 50 8 10 14 34 52

1K PB 8 12 16 38 52 8 10 18 34 50 8 10 14 34 52

1K PAIX 8 10 18 36 52 6 10 16 32 52 6 10 16 36 52

5K AADS 16 30 46 116 134 16 32 46 120 140 16 32 44 122 154

5K EAST 16 26 48 106 136 16 30 44 112 136 16 30 46 116 138

5K WEST 16 28 50 122 116 16 30 50 120 122 16 30 52 106 126

5K PB 16 30 52 104 116 16 32 52 110 132 16 28 46 114 146

5K PAIX 16 34 52 106 122 16 32 48 116 134 16 28 44 114 146

10K AADS 26 42 80 176 130 26 50 88 164 160 26 48 76 170 148

10K EAST 26 46 82 176 154 26 52 80 166 176 26 48 84 198 178

10K WEST 26 46 78 180 172 26 50 86 184 220 28 52 82 162 196

10K PB 26 46 84 158 132 26 52 84 156 170 26 48 76 190 218

10K PAIX 28 46 80 198 130 26 48 80 186 200 26 48 76 190 218

20K AADS 48 90 132 236 172 48 82 142 214 180 48 86 134 230 214

20K EAST 48 78 146 212 138 48 100 142 224 208 48 88 136 232 170

20K WEST 48 86 142 202 172 48 90 148 208 192 48 98 148 254 206

20K PB 46 88 138 224 158 48 86 148 202 176 48 90 140 204 224

20K PAIX 48 86 144 196 186 48 84 142 228 184 48 94 144 218 188

Figure 12: The total number of memory a

esses in the worst
ase s
enario for a syntheti
 two-dimension database having inje
ted a variable

per
entage of elements whi
h share a
ommon subpre�x. The database is sorted. W is is the depth of the subtrie
reated by these elements.

All the values are asso
iated with the ABV s
heme.

Lema 2 The maximum number of memory a

esses for the ABV s
heme with an aggregate size Afor a K dimension

database with N entries with W di�erent pre�x lengths, is equal with (2�W

K�1

+1)� (K �d

A

M

e) + d

N

A�M

e, where

M is the size of an word of memory.

8 Providing Fast Worst Case Update Times

ABV and BV appear to have reasonably fast updates on the average; however it is possible to insert a rule R that has

wild
ards in all �elds whi
h
auses a bit to be set in every bit ve
tor be
ause R mat
hes all rules. This will require

tou
hing most of the memory required by the algorithm. For
ertain appli
ations, su
h as stateful �lters, worst-
ase

update times may be ne
essary. We add the following ideas to ABV to allow for fast insert/delete operations:

� Redu
ed Pre
omputation: In the
urrent algorithm, a bit j is set for a pre�x P in a Field k trie if the value

of Field k of Rule R

j

mat
hes (i.e., is a pre�x of) P . In the new algorithm, a bit j is set for a pre�x P in a

Field k trie if the value of Field k of Rule R

j

is exa
tly equal to P . For example, if P = 101� and the Field k

value of Rule R

j

is �, then the original algorithm would have the bit set while the new one will not. Intuitively,

this simple modi�
ation avoids large worst-
ase
omputation
aused by examples su
h as the insertion of a

�lter of all wild
ards.

� In
reased Sear
h Time: Despite the redu
ed pre
omputation above, we still need to
olle
t all rules that

mat
h Field k of a pa
ket header for algorithm
orre
tness. To do so, when traversing the trie for �eld k for a

value P , we must take the OR of all bit maps asso
iated with P and all valid pre�xes of P in the trie. However,

ea
h of the pre�x nodes also have asso
iated aggregate bit maps; thus we
an ignore an aggregate at a pre�x

node if the summary bit is a 0.

17

� Avoiding ex
essive reordering: If we delete rule 5, and we have to push up the order number of all rules

with number greater than 5, then every bit map will have to
hange. Similarly, if we insert a new rule 5 and

wish all rules no less than 5 downwards, we have a similar problem. Our solution is to simply leave a hole (that

an be �lled later) for a delete, and to insert in arbitrary order (either to �ll the �rst hole left by a delete, at

the end, or to help in
remental sorting). Noti
e that this is possible be
ause we �nd all mat
hes and map ba
k

to the old order number.

Thus in summary the main idea is to redu
e pre
omputation asso
iated by re
ording all mat
hes asso
iated with

pre�xes and repla
ing it with more work to
olle
t these pre�x mat
hes during sear
h. If the number of pre�xes in a

path is no more than 4, then this slows down sear
h by at most a fa
tor of 4, while allowing an order of magnitude

speedup in worst-
ase insertion time. This may be worthwhile for some appli
ations or a portion of the database

that needs to be dynami
.

Figure 17 illustrates the modi�ed trie
onstru
tion for the simple two dimensional example database in Figure 1.

For example, in Figure 17, the bit ve
tor asso
iated with the leftmost node
orresponding to pre�x 00* is now

11000000000 instead of 11011100000 in Figure 2. On the other hand, a sear
h for pre�x 00* would yield two valid

pre�xes 0* (with bitmap 11000000000 and the pre�x 00* (with bitmap 11000000000) and the OR of these bitmaps

would yield the same answer found in Figure17 whi
h is 11011100000.

Sin
e the new algorithm re
e
ts a tradeo� between insert/delete times and sear
h time (the new algorithm also

adds memory for more bitmaps but this
an at most double the number of bitmaps), we evaluated this tradeo� in

Table 18. The table shows the worst
ase update time (measured in memory a

esses) and the worst
ase lookup

time for 3 algorithms: the Lu
ent Algorithm (BV), the original aggregated bit ve
tor (ABV), and the modi�ed ABV

with fast insertion times (ABVI) for the four
ommer
ial databases we used.

Noti
e that the worst-
ase insert-delete
osts are
ut by nearly three orders of magnitude while the sear
h time

is now up to twi
e as
omparable to the Lu
ent s
heme. This may be an a

eptable tradeo�. However, we expe
t

for larger databases (we will �nish this test for the �nal paper) ABVI lookups will be faster than the Lu
ent s
heme

though slower than ABV. We have also not implemented in
remental sorting; thus insertion and deletion in
rease the

number of false mat
hes. We believe that implementing in
remental sorting (su
h sorting
an be done proportional

to the number of distin
t pre�x lengths [13℄) will make ABVI more
ompetitive with ABV in sear
h times.

9 Con
lusions

The Lu
ent Bit Ve
tor s
heme [10℄ is a seminal s
heme that is very amenable to hardware or software implementation.

Despite the fa
t that it is fundamentally an O(N) s
heme, the use of an initial proje
tion step allows the s
heme

to work with bitmaps. Taken together with memory lo
ality, the s
heme allows a ni
e hardware (or software)

implementation. However, the s
heme only s
ales to medium size databases.

Our paper introdu
es the notion of aggregation and rule rearrangement to make the Lu
ent bit ve
tor (BV)

s
heme more s
alable,
reating what we
all the ABV s
heme. The resulting ABV s
heme is at least an order of

magnitude faster than the BV s
heme on all tests that we performed. The ABV s
heme appears to be equally

simple to implement in hardware or software. While both s
hemes have a poor worst-
ase insertion time (essentially

omparable), the average worst-
ase insertion time is small.

In
omparing the two heuristi
s we used, aggregation by itself is not powerful enough. For example, for large

syntheti
ally generated databases with 20% of the rules
ontaining zero length pre�xes, the performan
e of ABV

without rearrangement grew to be slightly worse than BV. However, the addition of sorting again made ABV faster

by an order of magnitude. A similar e�e
t was found for inje
ting subpre�xes. However, a more pre
ise statement

of the
onditions under ABV does well is needed.

A simple (and
orre
t)
ondition is that if the number of possible mat
hes in some �eld is limited to a
onstant,

then ABV takes logarithmi
 time, where the logarithm uses a large radix of at least 32. However, this may be too

restri
tive a
ondition (be
ause there
ould be a large number of wild
arded values in ea
h �eld), and
an probably

be generalized.

We evaluated our implementation on both industrial �rewall databases and syntheti
ally generated databases.

While we attempted to inje
t pre�xes that
ould
ause bad behavior, it is likely that further work is needed to �nd

other ways to randomly generate databases that will stress ABV even further. Using only 32 bit memory a

esses,

we were able to do a 20,000 rule random 2 dimensional databases (with almost half the entries being wild
ards) using

20 a

esses using 2 levels of hierar
hy. By
ontrast, the Lu
ent algorithm took 1250 memory a

esses on the same

18

database. Similarly, for a random 5 dimensional database of 20,000 rules the Lu
ent s
heme required 3320 memory

a

esses while ABV with one level of hierar
hy required only 140 memory a

esses. Taken together with wider

memory a

esses possible using either
a
he lines in software or wide busses in hardware, we believe our algorithm

should have suÆ
ient speed for OC-48 links even for large databases using SRAM.

We note that the hardware implementation of our algorithm
an be done using similar te
hniques to that of the

Lu
ent algorithm des
ribed in [10℄. In parti
ular, the initial sear
hes on the individual tries
an be pipelined with

the remainder of the sear
h through the bitmaps. The sear
hes in the levels of the bitmap hierar
hy
an also be

pipelined.

We also introdu
ed a modi�ed version of ABV, we
alled it ABVI, in order to allow fast update operations. In our

s
heme an update operation modi�es only one node per trie in all the
ases while in both BVS and ABV s
hemes an

worst
ase s
enario for update may modify all the valid pre�x nodes in the tries. The s
heme has lower performan
e

results than ABV and BVS for a small number of rules but
an perform better when the number of rules in
reases.

For example, in the
ase of a syntheti
 2D database with 20K entries having inje
ted 10% elements having a
ommon

subpre�x the worst
ase lookup time does not ex
eed 720 memory a

esses in the
ase of ABVI
omparing with 1250

memory a

esses in the
ase of BVS. Also, we note that we have not yet implemented in
remental sorting in ABVI;

this should make the numbers for ABVI mu
h better than BV and more
omparable to ABV.

While most of the paper used only one level of hierar
hy, we also implemented a two level hierar
hy for the

large syntheti
ally generated databases. The se
ond level of hierar
hy does improve the number of memory a

esses

for large
lassi�ers, whi
h suggests that the s
aling of ABV is indeed logarithmi
. It also suggests that ABV is

potentially useful for the very large
lassi�ers that may be ne
essary to support su
h appli
ations as Di�Serv and

ontent-based Load Balan
ing that are already being deployed.

Referen
es

[1℄ Cis
o ArrowPoint Communi
ations. In http://www.arrowpoint.
om, 2000.

[2℄ IETF Di�erentiated Servi
es (di�serv) Working Group. In http://www.ietf.org/html.
harters/di�serv-
harter.html, 2000.

[3℄ A. Feldman and S. Muthukrishnan. Tradeo�s for pa
ket
lassi�
ation. In Pro
eedings of Info
om vol. 1, pages 397{413,

mar
h 2000.

[4℄ P. Gupta and N. M
Keown. Pa
ket
lassi�
ation on multiple �elds. In Pro
eedings of ACM Sig
omm'99, september 1999.

[5℄ P. Gupta and N. M
Keown. Pa
ket
lassi�
ation using hierar
hi
al intelligent
uttings. In Pro
eedings of Hot Inter
onne
ts

VII, Stanford, august 1999.

[6℄ V.Srinivasan S.Suri G.Varghese. Pa
ket
lassi�
ation using tuple spa
e sear
h. In Pro
eedings of ACM Sig
omm'99,

september 1999.

[7℄ Merit In
. Ipma statisti
s. In http://ni
.merit.edu/ipma, 2000.

[8℄ R. Morris E. Kohler J. Jannotti and M. F. Kaashoek. The
li
k modular router. In Pro
eedings of the 17th ACM

Symposium on Operating Systems Prin
iples, de
ember 1999.

[9℄ M.Waldvogel G.Varghese J.Turner and B.Plattner. S
alable high speed ip routing lookups. In Pro
eedings of ACM

Sig
omm'97, o
tober 1997.

[10℄ T. V. Lakshman and D. Stidialis. High speed poli
y-based pa
ket forwarding using eÆ
ient multi-dimensional range

mat
hing. In Pro
eedings of ACM Sig
omm '98, september 1998.

[11℄ Memory-memory. In http://www.memorymemory.
om, 2000.

[12℄ C. Partridge. Lo
ality and route
a
hes. In Pro
eedings of NSF Workshop, Internet Statisti
s Measurement and Analysis,

february 1999.

[13℄ D. Shah and P. Gupta. Fast updates on ternary-
ams for pa
ket lookups and
lassi�
ation. In Pro
eedings of Hot

Inter
onne
ts VIII, Stanford, august 2000.

[14℄ J. Xu M. Singhal and J. Degroat. A novel
a
he ar
hite
ture to support layer-four pa
ket
lassi�
ation at memory a

ess

speeds. In Pro
eedings of Info
om, mar
h 2000.

[15℄ V.Srinivasan G.Varghese S.Suri and M.Waldvogel. Fast s
alable level four swit
hing. In Pro
eedings of ACM Sig
omm'98,

september 1998.

[16℄ M. M. Buddhikot S. Suri and M. Waldvogel. Spa
e de
omposition te
hniques for fast layer-4 swit
hing. In Pro
eedings

of the Conferen
e on Proto
ols for High Speed Networks, august 1999.

19

10 Appendix

We try to illustrate our algorithm on an imaginary �rewall database. Consider the �rewall database in the �gure

19. The database has 5 dimensions and 32 entries. Let's
onsider that IP

1

: : : IP

25

are 32 bit IP addresses whi
h are

not having either N

i

or M

i

, 1 � i � 3 as pre�xes. N

i

and M

i

are
hoosed su
h that N

i

is a pre�x of N

j

and M

i

is

also a pre�x of M

j

for i � j. N

i

and M

i

do not share a
ommon pre�x.

Five tries are generated based on the database in �gure 19, one trie is asso
iated with ea
h dimension. Consider

the worst
ase s
enario for the BVS algorithm in whi
h a lookup needs to be done for a pa
ket with the header

(M

32

; N

32

; 2500; 80; TCP). M

32

and N

32

haveM

2

and N

2

respe
tively as subpre�xes. A longest pre�x mat
h is done

in ea
h of the tries and �ve bit ve
tors are identi�ed for ea
h of the �ve dimensions of the database (�gure 20).

The mat
hing �lter in the BVS algorithm is found by doing a bit by bit AND between the �ve bit ve
tors. The

operation in this
ase requires the traversal of the whole bit ve
tor in order to �nd the mat
hing �lter. Let's assume

for simpli
ity that the size of an word is of 4 bits. In this
ase we need to read 5�

32

4

= 40 words of memory.

Assume now the use of the ABVS algorithm. As we mentioned before two ve
tors are asso
iated with ea
h valid

pre�x node. The �rst one is the bit ve
tor, similar with the one in the BVS algorithm. The se
ond ve
tor is the

aggregate bit ve
tor whi
h is
omputed based on the information in the �rst one. Figure 20 shows the aggregated

bit ve
tor for this example. The size of the aggregation window is 4. The ABVS algorithm
omputes a bit by bit

AND of the aggregated ve
tors and for ea
h value of 1 in the result
omputes a bit by bit AND of the aggregated

areas in the original ve
tors. In this
ase the result has values of 1 in all the positions whi
h implies that it needs

to read all the words from the original bit ve
tors. Therefore the total number of memory a

esses is equal with

2� 5 + 5�

32

4

= 50 whi
h is greater than the number of memory a

esses in the worst
ase of the BVS algrithm.

Let's
onsider now a rearrangement of the database in whi
h we are trying to group together entries having

wild
ards on the same dimension. The result is displayed in the �gure 21. The worst
ase s
enario for the BVs

algorithm for this new �rewall database
orresponds to a pa
ket of the type (AnyIP;AnyIP;AnyPort; 258; TCP).

It takes a number of 40 memory a

esses to serve a lookup request for su
h a pa
ket. However, in the
ase of the

ABVS algorithm, the aggregated bit ve
tor for the destination port dimension is 00110001 while the one for the

sour
eIP dimension might be 00000111 whi
h makes the total number of memory a

esses to be made equal with

5� 2+ 5� 1 = 15 words of memory. This is the minimum value for the worst
ase s
enario in the ABVS algorithm.

Applying the rearranging s
heme we introdu
ed in se
tion 5.2 the new �rewall database look like the one in �gure

22. For this
ase the worst
ase s
enario has the same number of memory a

esses like in the previous example.

20

0.0K 5.0K 10.0K 15.0K 20.0K

num. of entries

0.0

500.0

1000.0

1500.0

n
u

m
.
o

f
m

e
m

o
ry

 a
c
c
e
s
s
e
s

Number of Memory Accesses = f (number of entries), MAE−EAST

Percentage of injection = 0..90%, entries unsorted

w = 4, inj = 1
w = 4, inj = 10
w = 4, inj = 20
w = 4, inj = 50
w = 4, inj = 90
w = 6, inj = 1
w = 6, inj = 10
w = 6, inj = 20
w = 6, inj = 50
w = 6, inj = 90
w = 8, inj = 1
w = 8, inj = 10
w = 8, inj = 20
w = 8, inj = 50
w = 8, inj = 90
LUCENT

0.0K 5.0K 10.0K 15.0K 20.0K

num. of entries

0.0

500.0

1000.0

1500.0

n
u

m
.
o

f
m

e
m

o
ry

 a
c
c
e
s
s
e
s

Number of Memory Accesses = f (number of entries), MAE−EAST

Percentage of injection = 0..90%, entries sorted

w = 4, inj = 1
w = 4, inj = 10
w = 4, inj = 20
w = 4, inj = 50
w = 4, inj = 90
w = 6, inj = 1
w = 6, inj = 10
w = 6, inj = 20
w = 6, inj = 50
w = 6, inj = 90
w = 8, inj = 1
w = 8, inj = 10
w = 8, inj = 20
w = 8, inj = 50
w = 8, inj = 90
LUCENT

Figure 13: The number of memory a

esses as a fun
tion of number of database entries. ABV s
heme outperforms the BVS s
heme with a

fa
tor of 2 : : : 4 if the database is not sorted and with a fa
tor of 2 : : : 7 if the database is sorted. Syntheti
 database generated using MAE-EAST

routing table and by randomly inserting group of elements whi
h are sharing a
ommon subpre�x. W is the depth of the subtrie
reated by

these elements

21

Experiment No. Of Entries = 5000 No. Of Entries = 10000 No. Of Entries = 20000

One Level Two Levels One Level Two Levels One Level Two Levels

0% stars 16 14 26 14 46 18

1% stars 18 14 30 20 52 22

5% stars 20 14 30 18 52 26

10% stars 22 20 32 22 50 22

50% stars 20 18 30 18 50 20

Figure 14: Comparison between the ABV algorithm with one and two levels of aggregation. The �lter database is sorted and it is generated

using the MAE-EAST routing table.

Size BVS ABV - 32

3722 585 40

7799 1220 65

21226 3320 140

Figure 15: ABV vs. BVS s
heme for a �ve dimension syntheti
 generated database. Syntheti
 database generated using MAE-EAST routing

table and port number ranges and proto
ol numbers from the industrial �rewall databases. We
onsider an aggregate size of 32.

X 0*
1* Y

X 01*
10* Y

X 011*
100* Y

X 0111*
1000* Y

length = 1

length = 2

length = 3

length = 4

Pattern A

Z A

Z A

Z A

Z A

1

2

3

4

3-dimension
filter database

Possible False

Matches

Figure 16: An example of a 2 and 3 dimension database with the number of di�erent lengths of pre�xes equal with 4 for whi
h the number

of false mat
hings is equal with 4 and 16 respe
tively.

22

FIELD 1

FIELD 2

0 1

0 1

00011000001

10 0 1

0 0 1

Aggregate Size = 4

11000000000

00001110000 00000001100

00100000001 00010000010100

101

00000010110

011

10000000000

100

01000001000

010 011

101

00100100000

110111110

Figure 17: Two tries asso
iated with ea
h of the �elds in the database of Figure 1 in the ABVI Algorithm. Compare the bitmaps with those

of the ABV algorithm in Figure 2.

Filter No. of Modi�ed Mem. Lo
. by Update Lookup Time

BV ABV ABVI BV ABV ABVI

DB

1

9776 384 10 260 120 260

DB

2

5970 396 10 150 110 336

DB

3

2159 254 10 85 60 154

DB

4

2002 286 10 75 55 192

Figure 18: ABVI vs ABV vs BV: the total number of memory lo
ation that are modi�ed by an update operation in the worst
ase and the

worst
ase lookup time.

23

Sour
e IP Dset. IP Sour
e Port Dest. Port Proto
ol

� IP

1

1024 : : :65535 80 TCP

IP

2

N 1024 : : :65535 80 TCP

IP

3

� 1024 : : :65535 80 TCP

M

2

IP

4

1024 : : :65535 80 TCP

IP

5

N

1

1024 : : :65535 80 TCP

� IP

6

1024 : : :65535 80 TCP

� � � 512 TCP

M

1

IP

7

1024 : : :65535 80 TCP

IP

8

� 1024 : : :65535 80 TCP

M

2

N

2

� 256 TCP

� IP

9

� 256 TCP

� � � 257 TCP

IP

10

� 1024 : : :65535 80 TCP

M

2

N

2

� � UDP

IP

11

IP

12

� � UDP

IP

28

N

2

� � UDP

� � � 258 TCP

IP

13

IP

14

� 80 TCP

M

2

N

1

� 259 TCP

M

2

N � 260 TCP

M

2

� � 261 TCP

IP

15

IP

16

� 261 TCP

M

1

N

1

� 262 TCP

IP

17

IP

18

� � �

M N � 264 TCP

IP

19

IP

20

� � �

IP

21

IP

26

� 264 TCP

IP

22

IP

27

� 264 TCP

� IP

23

� 264 TCP

� IP

24

� 264 TCP

� IP

25

� 264 TCP

M

2

N

2

� 80 TCP

Figure 19: A 32 rules, 5 dimensions �rewall database

Dimension Bit Ve
tor Aggregate

Sour
e IP Pref.= M

2

10010111011101001011101010001111 11111111

Dest. IP Pref. = N

2

01101010110111011011101010110001 11111111

Sour
e Port = 1024 /10 11111111111111111111111111111111 11111111

Dest. Port = 80 111111011000111101000000101000001 11111111

Proto
ol = TCP 11111111111110001111111111111111 11111111

Figure 20: A 32 rules, 5 dimensions �rewall database

24

Sour
e IP Dset. IP Sour
e Port Dest. Port Proto
ol

IP

2

N 1024 : : :65535 80 TCP

M

2

IP

4

1024 : : :65535 80 TCP

IP

5

N

1

1024 : : :65535 80 TCP

M

1

IP

7

1024 : : :65535 80 TCP

IP

13

IP

14

� 80 TCP

M

2

N

1

� 259 TCP

M

2

N � 260 TCP

IP

15

IP

16

� 261 TCP

M

1

N

1

� 262 TCP

M N � 264 TCP

IP

21

IP

26

� 264 TCP

IP

22

IP

27

� 264 TCP

M

2

N

2

� 80 TCP

M

2

N

2

� 256 TCP

M

2

N

2

� � UDP

IP

11

IP

12

� � UDP

IP

28

N

2

� � UDP

IP

17

IP

18

� � �

IP

19

IP

20

� � �

IP

3

� 1024 : : :65535 80 TCP

IP

8

� 1024 : : :65535 80 TCP

IP

10

� 1024 : : :65535 80 TCP

M

2

� � 261 TCP

� IP

1

1024 : : :65535 80 TCP

� IP

6

1024 : : :65535 80 TCP

� IP

9

� 256 TCP

� IP

23

� 264 TCP

� IP

24

� 264 TCP

� IP

25

� 264 TCP

� � � 512 TCP

� � � 257 TCP

� � � 258 TCP

Figure 21: A 32 rules, 5 dimensions �rewall database after rearranging the entries by grouping the ones having wild
ards as pre�xes).

25

Sour
e IP Dset. IP Sour
e Port Dest. Port Proto
ol

IP

2

N 1024 : : :65535 80 TCP

IP

5

N

1

1024 : : :65535 80 TCP

IP

13

IP

14

� 80 TCP

IP

15

IP

16

� 261 TCP

IP

21

IP

26

� 264 TCP

IP

22

IP

27

� 264 TCP

IP

11

IP

12

� � UDP

IP

28

N

2

� � UDP

IP

17

IP

18

� � �

IP

19

IP

20

� � �

IP

3

� 1024 : : :65535 80 TCP

IP

8

� 1024 : : :65535 80 TCP

IP

10

� 1024 : : :65535 80 TCP

M

2

IP

4

1024 : : :65535 80 TCP

M

2

N

2

� 80 TCP

M

2

N

2

� 256 TCP

M

2

N

2

� � UDP

M

2

N

1

� 259 TCP

M

2

N � 260 TCP

M

2

� � 261 TCP

M

1

IP

7

1024 : : :65535 80 TCP

M

1

N

1

� 262 TCP

M N � 264 TCP

� IP

1

1024 : : :65535 80 TCP

� IP

6

1024 : : :65535 80 TCP

� IP

9

� 256 TCP

� IP

23

� 264 TCP

� IP

24

� 264 TCP

� IP

25

� 264 TCP

� � � 512 TCP

� � � 257 TCP

� � � 258 TCP

Figure 22: A 32 rules, 5 dimensions �rewall database after rearranging the entries by grouping together the entries having the same dimension

for pre�xes on ea
h dimension and then sorting the elements for every dimension).

26

