Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Local-strain-induced CO2 adsorption geometries and electrochemical reduction pathway shift.

Abstract

Unravelling the influence of strain and geometric effects on the electrochemical reduction of carbon dioxide (CO2RR) on Cu-based (or Pd-based) alloys remains challenging due to complex local microenvironment variables. Herein, we employ two PdCu alloys (nanoparticles and nanodendrites) to demonstrate how CO2RR selectivity can shift from CO to HCOO-. Despite sharing consistent phases, exposed crystal facets, and overall oxidative states, these alloys exhibit different local strain profiles due to their distinct geometries. By integrating experimental data, in-situ spectroscopy, and density functional theory calculations, we revealed that CO2 prefers adsorption on tensile-strained areas with carbon-side geometry, following a *COOH-to-CO pathway. Conversely, on some compressive-strained regions induced by the dendrite-like morphology, CO2 adopts an oxygen-side geometry, favoring an *OCHO-to-HCOO pathway due to the downshift of the d-band center. Notably, our findings elucidate a dominant *OCHO-to-HCOO- pathway in catalysts when featuring both adsorption geometries. This research provides a comprehensive model for local environment of bimetallic alloys, and establishes a clear relationship between the CO2RR pathway shift and variation in local strain environments of PdCu alloys.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View