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ABSTRACT 

Unravelling the influence of strain and geometric effects on the electrochemical reduction of carbon dioxide 
(CO2 RR) on Cu-based (or Pd-based) alloys remains challenging due to complex local microenvironment 
variables. Herein, we employ two PdCu alloys (nanoparticles and nanodendrites) to demonstrate how 

CO2 RR selectivity can shift from CO to HCOO−. Despite sharing consistent phases, exposed crystal facets, 
and overall oxidative states, these alloys exhibit different local strain profiles due to their distinct geometries. 
By integrating experimental data, in-situ spectroscopy, and density functional theory calculations, we 
revealed that CO2 prefers adsorption on tensile-strained areas with carbon-side geometry, following a 
*COOH-to-CO pathway. Conversely, on some compressive-strained regions induced by the dendrite-like 
morphology, CO2 adopts an oxygen-side geometry, favoring an *OCHO-to-HCOO pathway due to the 
downshift of the d -band center. Notably, our findings elucidate a dominant *OCHO-to-HCOO− pathway in 
catalysts when featuring both adsorption geometries. This research provides a comprehensive model for 
local environment of bimetal lic al loys, and establishes a clear relationship between the CO2 RR pathway 
shift and variation in local strain environments of PdCu alloys. 

Keywords: local strain, CO2 electroreduction, pathway shift, PdCu alloys 
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via a C–C coupling and hydrogenation process. Con- 
versely, the latter pathway instigates the formation of 
formic acid/formate [12 ], formaldehyde [13 ], and 
other products. Furthermore, cascading these prod- 
ucts with bio-catalysis [2 ,14 ] or abio-catalysis [15 ] 
can even upcycle CO2 into carbohydrates. 

Copper is sti l l the most functional electrocata- 
lyst for deeply catalyzing CO2 RR [16 ]. Nevertheless, 
a fraction of high-activity undercoordinated sites of 
pure metallic Cu tend to decay under electrochem- 
ical conditions [17 ,18 ]. Alloying is extensively em- 
ployed to tune the catalytic activity and corrosion 
resistance for CO2 RR [19 –23 ]. However, disentan- 
gling strain effects from the accompanied geometric 
effects of alloying is sti l l a chal lenge [8 ,24 ]. Given 
that most characterization techniques can only ob- 
tain overall information about the material [25 ], 
local environment changes are difficult to spot in 

©The Author(s) 2024. Published
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work is properly cited. 
NTRODUCTION 

ctivation and electrochemical reduction of carbon
ioxide (CO2 RR) into high-value chemical feed-
tocks, with renewable energy, emerges as a plausi-
le approach to simultaneously address the press-
ng issues of climate change and energy deficiency
1 ,2 ]. Generally, CO2 molecules interact with cat-
lytic surfaces by adhering to two distinct geome-
ries, defining the forthcoming reaction pathways.
he two adsorptive configurations of CO2 can be
ctivated into two principal geometries—*COOH
nd *OCHO intermediates. The first pathway in-
olves binding a carbon atom to the catalytic surface,
hile the other pathway primarily engages the oxy-
en atom [3 –8 ]. In the case of the former, it con-
erts CO2 into *CO intermediate, potentially gen-
rating C2 + 

hydrocarbons [9 ,10 ] or oxygenates [11 ]
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any cases. For example, irrespective of their state
f order, disorder, phase-separation, or atomic ar-
angement, PdCu nanoparticles (PdCu-NP) show a
roclivity towards the *COOH-mediated pathway
20 ,26 –28 ]. However, PdCu nanodendrites (PdCu-
D) with even the same elemental composition and
lectronic structures have demonstrated substantial
ctivity towards the *OCHO-to-formate pathway
21 ,29 ] ( Table S1). Therefore, we need to further
xplore the potential impact of local environments’
hange on the performance of CO2 RR [30 ,31 ]. 
In our investigation, we meticulously synthe-

ized PdCu-NP and PdCu-ND via the wet-chemical
ethod [32 ,33 ], ensuring a consistent oxidative
tate, phase, and exposed crystal facets across the
amples. The PdCu-NP exhibited effective CO2 -to-
O activity, while the PdCu-ND transitioned to
ommendable CO2 -to-formate performance within
he same potential range. By careful characteriza-
ion, we found that the morphology difference is ac-
ompanied by a distinct local-environment configu-
ation (LEC). One LEC occurs on PdCu-NP and the
ranch part of PdCu-ND and owns a tensile strain
haracteristic, while the other LEC has distinct com-
ressive strain on the joint part of PdCu-ND. By
ntegrating in situ electrochemical attenuated total
eflectance surface enhanced infrared absorption
pectroscopy (ATR-SEIRAS) spectra with density
unctional theory (DFT) calculations, we discerned
hat CO2 tends to be adsorbed on the former ten-
ile LEC by a carbon-side geometry and activated
hrough a *COOH-to-CO pathway, while on the
atter compressive LEC, it tends to be adsorbed
y an oxygen-side geometry and activated through
n *OCHO-to-HCOO− pathway. Intriguingly, our
ndings disclose a preferential *OCHO-to-HCOO−

athway when both routes are present on one cat-
lyst. This work provided a new paradigm for the
tudy of the local environment, and unraveled the re-
ationship between the CO2 RR pathway shift and lo-
al strain variation on bimetallic alloys. 

ESULTS AND DISCUSSION 

ynthesis and structural characterization 

f PdCu-NP and PdCu-ND 

e meticulously prepared PdCu-NP and PdCu-ND
y reducing the same proportion of metal precur-
ors, palladium (II) acetylacetonate (Pd(acac)2 ) and
opper(II) acetylacetonate (Cu(acac)2 ), under the
ame experimental conditions [33 ] (see Methods
or details). The only controlled step is that we em-
loyed a different amount of additional reducing
gent (ascorbic acid, AA) to control the reduction
ate of metal precursors and the resultant morphol-
Page 2 of 8
ogy changes from particles to dendrites (Fig. 1 a and 
Fig. S1). 

The high-angle annular dark-field scanning trans- 
mission electron microscopy (HAADF-STEM) and 
high-resolution TEM (HRTEM) images show that 
the morphology of PdCu-NP is sphere-like nanopar- 
ticles ( ∼3–5 nm) (Fig. 1 b and Fig. S2) while 
PdCu-ND exhibits a dendrite-like morphology 
(Fig. 1 c). The HRTEM images and diffraction pat- 
terns ( Figs S3–S5) suggest that Pd and Cu formed an 
alloy face centered cubic (fcc) structure as indicated 
by a d -spacing of 2.20 ± 0.01 Å corresponding to a 
(111) interplanar distance in PdCu-NP and PdCu- 
ND. The X-ray diffraction (XRD) peaks (Fig. 1 d) of 
the two alloys exhibited the same diffraction peaks at 
42.05°, 48.55° and 71.37°, which are assigned to the 
(111), (200) and (220) planes of the fcc structure 
[20 ], which agrees with the HRTEM images and 
diffraction patterns. 

Furthermore, we employed X-ray photoelectron 
spectroscopy (XPS) and X-ray absorption spec- 
troscopy (XAS) to study the average oxidative states 
and overall coordination states across the samples. 
The XPS spectra (Fig. 1 e and Fig. S6) show that, 
in PdCu-NP and PdCu-ND, Pd and Cu exhibit very 
similar chemical valence states possibly due to that 
ligands (such as KI) stabilize metal valence states. 
The normalized X-ray absorption near edge struc- 
ture spectra (XANES) of the Cu K-edge (Fig. 1 f) 
show that the near-edge lines for PuCu-NP and 
PdCu-ND are overlapped and close to Cu2 O. The 
XANES of the Pd K-edge (Fig. 1 g) also show that 
PdCu-NP and PdCu-ND alloys exhibit equal near 
edge features and white-line intensity, which reveals 
that the overall Pd oxidative states are the same. 
These observations agree with the XPS results. 
Generally, the synthesized PdCu-NP and PdCu-ND, 
own consistent phase, exposed crystal facets, and 
oxidative state across the samples. 

Local environment characterization and 

analysis 
In order to portray the local environment of PdCu- 
NP and PdCu- ND, we performed detailed energy 
dispersive spectroscopy (EDS). The overlapped 
EDS elemental mapping with HR-HAADF-STEM 

images (Fig. 2 a–f and Fig. S7) shows that Pd and 
Cu are evenly distributed throughout the catalysts. 
We also carried out a detailed EDS spot scan and 
found that the Cu/Pd ratio is close to 25/75 on 
particles (Fig. 2 c and Figs S8, S9). Specially, on 
the PdCu-ND, the composition arrangement on 
branch parts (denoted as B, the average Cu/Pd ratio 
is 36/64) are similar to that of PdCu-NPs, while 
Cu is enriched on the joint part (denoted as J, the

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
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Figure 1. Synthesis and structural characterization. (a) Scheme of the synthesis process of PdCu-NP and PdCu-ND. (b, c) HR-HAADF-STEM images of 
PdCu-NP and PdCu-ND and corresponding (d) XRD and (e) XPS. XANES at (f) Cu K-edge and (g) Pd K-edge. 
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verage Cu/Pd ratio is 52/48) (Fig. 2 f and Fig. S10).
herefore, in the case of element distribution, the
d-rich PdCu-NP are similar to the branch parts
f PdCu-ND while the joint parts of PdCu-ND are
u-rich. In other words, the geometry variations are
ccompanied by local component differences. 
In addition, we developed an electrochemical Cu

tripping and collection method to portray the local
nvironment of PdCu-ND and PdCu-NP. As shown
n the scheme (Fig. 2 g), PdCu alloys were loaded
n the disk which applied oxidative potential (from
0.214 V to 0.85 V versus A g/A gCl); meanwhile,
he Pt-ring was biased at a constant reductive po-
ential ( −0.17 V versus A g/A gCl) in order to col-
ect oxidized Cu ions. During the forward scanning
rocess of cyclic voltammetry (CV) on the disk,
ainly only one kind of Cu (denoted as Cu(A))
as detected at 0.85 V versus A g/A gCl in PdCu-
P (Fig. 2 h and Fig. S11). For PdCu-ND, in addi-
ion to Cu(A), there was another Cu (denoted as
u(B)) detected at 0.70 V versus A g/A gCl (Fig. 2 i
nd Fig. S11). The electrochemical Cu stripping and
ollection further proved that, for Cu atoms, the local
nvironment of PdCu-NP and branch part of PdCu-
D are similar, while the joint part of PdCu-ND is
ifferent. 
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Furthermore, we employed geometric phase 
analysis (GPA) [34 ] to analyze the strain of PdCu-
NP and PdCu- ND. As for PdCu-NP, maps of in-
plain strain of GPA show that the nanoparticles are 
mostly dominated by tensile strain (Fig. 3 a–c), and 
the statistical average strain ( εxx ) of nanoparticles 
is 1.605%. When it comes to PdCu-ND, the branch 
part exhibits 1.819% tensile strain as does PdCu-NP; 
however, the joint part of PdCu-ND is mostly domi- 
nated by the compressive strain of −2.06% (Fig. 3 d–
f). These local strain variations are also found along 
with the gradual morphology change from parti- 
cles to dendrites ( Fig. S12). In addition, we sup- 
plemented the wavelet transformed (WT) EXAFS 
spectra ( Fig. S13) and found that the centers of 
[ χ(k), χ(R)] intensity of PdCu-ND are lower than 
that of PdCu-NP, which indicates the relatively com- 
pressive character of PdCu-ND. The results are con- 
sistent with the overall strain analysis. 

Electrochemical performance and 

structure-activity relationship 

When it comes to the performance of electrochem- 
ical CO2 RR, we conducted tests using a CO2 - 
saturated 0.1 M KHCO3 solution. As shown in the 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
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Figure 2. Local environment characterization and analysis. (a, d) Overlapped EDS elemental mapping with (b, e) HR-HAADF-STEM images and corre- 
sponding (c, f) elemental distribution of PtCu-NP and PdCu-ND, respectively. (g) Scheme of Cu stripping and collection and testing for (h) PdCu-NP and 
(i) PdCu-ND in 0.05 M H2 SO4 . 

Figure 3. Local environment characterization and analysis. (a–c) PdCu-NP’s and (d–f) PdCu-ND’s AC-HADDF-STEM images 
and corresponding strain maps at the tensor of xx, xy and yy, respectively. 

l  

P  

P  

d  
inear sweep voltammetry (LSV) curves ( Fig. S14),
dCu-NP displayed a higher current density than
dCu-ND over the entire potential range, which may
erive from higher surface areas ( Fig. S15). When
Page 4 of 8
it comes to CO2 reduction products, the synthe- 
sized PdCu alloys have good CO2 fixation ability 
( Fig. S16). The PdCu-NP exhibited effective CO2 - 
to-CO activity ( > 80% faradaic efficiency (FECO 

), 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
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Figure 4. Performance and structure-activity relationship. (a, b) FE and current density of CO2 RR performance for PdCu-NP and PdCu-ND and (c, d) 
corresponding in situ ATR-SEIRAS spectra. 

Table 1. The strains and components of different PdCu alloys. 

Catalyst Cu/Pd ratio Strain Main product 

PdCu-NP 25.25/74.75 Tensile CO 

Pd1 Cu1 -NP 47.64/52.36 Tensile CO 

PdCu-ND (Branch) 36.20/63.80 Tensile Formate 
PdCu-ND ( Joint) 51.56/48.44 Compressive 
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t −1.085 V versus reversible hydrogen electrode
RHE)) (Fig. 4 a). For PdCu-Mid, we can find that
oth a certain amount of formate and CO were pro-
uced over the whole potential window ( Fig. S17),
hile the PdCu-ND transitioned to commendable
O2 -to-formate performance ( > 80% FEHCO O− , at
1.085 V versus RHE) within the same potential
ange (Fig. 4 b and Fig. S18). After a 24-h reaction,
oth catalysts showed relatively good morphology
tability and selectivity ( Figs S19–S21). These per-
ormances are consistent with other independently
eported PdCu nanoparticles [20 ,26 –28 ] or PdCu
anodendrites [21 ,29 ]. 
Besides, to further figure out the roles of Pd

nd Cu sites, the CO2 RR performance of pure Pd
 Fig. S22a) was tes ted unde r the same conditions,
nd results showed that H2 , CO, and formic acid can
e detected in the product, but as the voltage in-
reases, H2 begins to dominate ( Fig. S22b). To as-
ess this further, we employed CO stripping in order
o discover whether Pd sites of PdCu alloys can act
ith CO or not. The CO stripping results ( Fig. S23)
howed that there is no obvious CO oxidation on
dCu alloys, which should be located at ∼0.88 V ver-
us RHE. Therefore, we suppose that the Cu site is
ikely to play a role in adsorption and activation of
O2 , while the Pd site is better at providing protons
or CO2 hydrogenation. 
To further distinguish the component or the

train that determines the CO2 RR performance dif-
erence, we synthesized Pd1 Cu1 -NP (see Supple-
entary method for details) as a control catalyst

 Figs S24 and S25). T hough Pd1 Cu1 -NP has a
Page 5 of 8
similar Pd and Cu amount with the joint part 
of PdCu-ND, the GPA results ( Fig. S26) showed 
that Pd1 Cu1 -NP has a tensile strain (1.63%). The 
CO2 RR performance of Pd1 Cu1 -NP ( Fig. S27) 
showed that the main product is sti l l CO, the same
as tensile PdCu-NP’s (Table 1 ). Therefore, we con- 
cluded that the compressive strain of the joint part 
of PdCu-ND probably derived from the morphology
effect but not component difference, and the tensile 
local environment of PdCu alloys are conducive to 
CO2 -to-CO pathways. 

We then employed in situ ATR-SEIRAS for fur- 
ther investigation ( Fig. S28). In CO2 -saturated 0.1 M 

NaHCO3 solution, we used the infrared signal in- 
tensity measured at open-circuit potential (OCP) as 
the background. In Fig. 4 c, on scanning the applied 
potential from −0.885 to −1.185 V versus RHE 

over the PdCu-NP catalyst, a band at 2050 cm−1 at- 
tributable to CO (derived from *COOH intermedi- 
ates [4 ,5 ,35 ]) adsorbed atop sites of the Cu [12 ,18 ]
was observed, which is in agreement with recently re- 
ported tensile Cu [36 ]. A combination peak at 1670–
1675 cm−1 can be assigned to the C = O asymmet-
ric stretch of *COOH intermediate [35 ] and the 
inverse water peak [37 ] (H–O–H bend, at 1630–
1640 cm−1 ). The band located at 1670–1675 cm−1 

can be attributed to the vibration band of HCO3 
−

[38 ]. The peaks centered around 1420–1430 cm−1 

can be assigned to *OCHO species [39 ,40 ], which
is the key intermediate for formate formation. On 
PdCu-ND, because it owns both compressive joint 
and tensile branch, we can observe both *OCHO 

and *COOH intermediate. The relative intensity of 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
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Figure 5. Theoretical study. The DFT calculation on (a) the tensile Pd3 Cu1 , and 
(b) compressive Pd1 Cu1 . The COOP of (c) *COOH and (d) *OCHO on tensile Pd3 Cu1 
and compressive Pd1 Cu1 . (e) The d band centers change of Pd1 Cu1 along with different 
strains. (f) Scheme of the mechanism. 
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OCHO on PdCu-ND is much more obvious be-
ause HCOO− dominates the products. To sum
p, in situ ATR-SEIRAS results of the two cata-
ysts are highly consistent with the corresponding
O2 RR performance, which confirmed the CO2 -
COOH-CO pathway on tensile areas, while the
O2 -*OCHO-formate pathway occurs when a com-
ressive local environment coexists in PdCu alloys. 

heoretical study 
urthermore, we constructed structural models
ased on the metal composition of PdCu alloys
nd conducted DFT calculations to explore the
tructure–activity relationship. According to the
train and selectivity characteristic, we constructed
ensile Pd3 Cu1 in order to represent the structure
f PdCu-NP and the branch part of PdCu-ND, and
ompressive Pd1 Cu1 to represent the joint part
f PdCu-ND ( Fig. S29). Fig. 5 a shows that, on
ensile Pd3 Cu1 surface, the free energy of *COOH
s lower than that of *OCHO by 0.05 eV, which is
onsistent with the fact that the PdCu-NP exhibited
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effective CO2 -*COOH-CO activity. When it comes 
to compressive Pd1 Cu1 surface (Fig. 5 b), the free 
energy gap between *OCHO and *COOH became 
larger, with the free energy of *OCHO lower than 
that of *COOH by 0.2 eV. Besides, the free energy 
of *OCHO on the joint part is 0.313 eV which is also
lower than 0.337 eV of *COOH on the branch part. 
It explained the reason why PdCu-ND exhibited 
the CO2 -*OCHO-formate pathway mainly in a 
cer tain por tion of the tensile branch part. We further 
simulated a larger strain and found the same trend 
( Fig. S30). 

Besides, crystal orbital overlap population [41 ] 
(COOP) analysis also evidenced that *COOH 

(Fig. 5 c) tends to form on tensi le Pd3 Cu1 whi le
*OCHO (Fig. 5 d) tends to form on compressive 
Pd1 Cu1 . Integrated COOP (ICOOP) of different in- 
termediates ( Table S2) follows: (1) *COOH: ten- 
sile Pd3 Cu1 > compressive Pd1 Cu1 ; (2) *OCHO: 
tensile Pd3 Cu1 < compressive Pd1 Cu1 , further sup- 
porting our conclusions. The reason is most likely 
the greater downshift of d -band center of compres- 
sive Pd1 Cu1 which leads to a higher ratio of *OCHO 

to *COOH coverage (Fig. 5 e and Fig. S31) [42 ]. In
other words, the DFT results showed that the CO2 - 
*COOH-CO pathway occurred on tensile PdCu-NP, 
while the CO2 -*OCHO-formate pathway was dom- 
inant on the compressive joint part of PdCu-ND and 
the CO2 -*COOH-CO pathway was suppressed on 
the tensile branch part (Fig. 5 f). 

CONCLUSION 

In summary, we synthesized PdCu-NP and PdCu- 
ND with a consistent oxidative state, phase, and 
exposed crystal facets as model catalysts to reg- 
ulate CO2 RR reaction pathways. By careful char- 
acterization, we found that the local compressive 
strain in the joint part of PdCu-ND is gener- 
ated by morphology effects, and the tensile strain 
is conductive to the CO2 -*COOH-CO pathway 
while the CO2 -*OCHO-formate pathway occurs 
preferentially when compressive strain co-exists 
because of the lower free energy of the forma- 
tion of *OCHO than that of *COOH. There- 
fore, the CO2 RR selectivity shifts from CO to 
formate as the CO2 -*OCHO-formate pathway is 
dominant on the joint part of PdCu-ND, though 
on the branch part of PdCu-ND has the chance 
to conduct the CO2 -*COOH-CO pathway. This 
work provided a new paradigm for the study of 
the local environment of bimetallic alloys, and 
unraveled the relationship between the CO2 RR 

pathway shift and local strain variation of PdCu 
alloys. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae191#supplementary-data
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ETHODS 

hemicals and materials 
alladium acetylacetonate, copper acetylacetonate
Cu(acac)2 , 99.9%), poly(vinylpyrrolidone) (PVP,
W = 10 0 0 0), potassium iodide (KI, 9 9.9 9%),
 -ascorbic acid (99.9%), tris(hydroxymethyl)
minomethane (99.8%), formaldehyde solution
HCHO, 37%) and formamide (99.5%) were pur-
hased from Sigma-Aldrich. Acetone (99.9%) and
thanol (99.9%) were purchased from Sinopharm
hemical Reagent. All the materials were used as re-
eived without further purification for the synthesis
f PdCu alloys. 

ynthesis of PdCu nanoparticles 
n a typical synthesis of PdCu nanoparticles, a
ixture of 100 mg of tris and 400 mg of PVP was
issolved in 3 mL of HCHO solution and trans-
erred to Teflon-lined stainless-steel autoclave which
as heated at 200°C for 3 h. A gel-like material
as obtained after washing and centrifugation in
cetone. A homogeneous solution of 0.02 mmol of
d(acac)2 , 0.02 mmol of Cu(acac)2 and 80 mg/g of
I and ascorbic acid (5 mg) was prepared in 4 mL of
ormamide solvent and poured into a 12-mL Teflon-
ined stainless-steel autoclave along with the gel-like
aterial which was prepared earlier; the autoclave
as then kept in the oven at 150°C for 3 h. The fi-
al product was obtained after washing with ethanol
nd acetone. 

ynthesis of PdCu nanodendrites 
ynthesis of PdCu nanodendrites was carried out
nder the same experimental conditions as
anopartcles, except that the ligand (i.e. KI) and
educing agent (i.e. ascorbic acid) was added along
ith Pd(acac)2 , Cu(acac)2 , and the amount of
scorbic acid used was increased to 80 mg. 

UPPLEMENTARY DATA 

upplementary data are available at NSR online. 
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