Skip to main content
Download PDF
- Main
Timing optimization of low-dose first-pass analysis dynamic CT myocardial perfusion measurement: validation in a swine model
Abstract
Background
Myocardial perfusion measurement with a low-dose first-pass analysis (FPA) dynamic computed tomography (CT) perfusion technique depends upon acquisition of two whole-heart volume scans at the base and peak of the aortic enhancement. Hence, the objective of this study was to validate an optimal timing protocol for volume scan acquisition at the base and peak of the aortic enhancement.Methods
Contrast-enhanced CT of 28 Yorkshire swine (weight, 55 ± 24 kg, mean ± standard deviation) was performed under rest and stress conditions over 20-30 s to capture the aortic enhancement curves. From these curves, an optimal timing protocol was simulated, where one volume scan was acquired at the base of the aortic enhancement while a second volume scan was acquired at the peak of the aortic enhancement. Low-dose FPA perfusion measurements (PFPA) were then derived and quantitatively compared to the previously validated retrospective FPA perfusion measurements as a reference standard (PREF). The 32-cm diameter volume CT dose index, [Formula: see text] and size-specific dose estimate (SSDE) of the low-dose FPA perfusion protocol were also determined.Results
PFPA were related to the reference standard by PFPA = 0.95 · PREF + 0.07 (r = 0.94, root-mean-square error = 0.27 mL/min/g, root-mean-square deviation = 0.04 mL/min/g). The [Formula: see text] and SSDE of the low-dose FPA perfusion protocol were 9.2 mGy and 14.6 mGy, respectively.Conclusions
An optimal timing protocol for volume scan acquisition at the base and peak of the aortic enhancement was retrospectively validated and has the potential to be used to implement an accurate, low-dose, FPA perfusion technique.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
If you recently published or updated this item, please wait up to 30 minutes for the PDF to appear here.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%