Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Automated algorithm for counting microbleeds in patients with familial cerebral cavernous malformations

Abstract

Purpose

Familial cerebral cavernous malformation (CCM) patients present with multiple lesions that can grow both in number and size over time and are reliably detected on susceptibility-weighted imaging (SWI). Manual counting of lesions is arduous and subject to high variability. We aimed to develop an automated algorithm for counting CCM microbleeds (lesions <5 mm in diameter) on SWI images.

Methods

Fifty-seven familial CCM type-1 patients were included in this institutional review board-approved study. Baseline SWI (n = 57) and follow-up SWI (n = 17) were performed on a 3T Siemens MR scanner with lesions counted manually by the study neuroradiologist. We modified an algorithm for detecting radiation-induced microbleeds on SWI images in brain tumor patients, using a training set of 22 manually delineated CCM microbleeds from two random scans. Manual and automated counts were compared using linear regression with robust standard errors, intra-class correlation (ICC), and paired t tests. A validation analysis comparing the automated counting algorithm and a consensus read from two neuroradiologists was used to calculate sensitivity, the proportion of microbleeds correctly identified by the automated algorithm.

Results

Automated and manual microbleed counts were in strong agreement in both baseline (ICC = 0.95, p < 0.001) and longitudinal (ICC = 0.88, p < 0.001) analyses, with no significant difference between average counts (baseline p = 0.11, longitudinal p = 0.29). In the validation analysis, the algorithm correctly identified 662 of 1325 microbleeds (sensitivity=50%), again with strong agreement between approaches (ICC = 0.77, p < 0.001).

Conclusion

The automated algorithm is a consistent method for counting microbleeds in familial CCM patients that can facilitate lesion quantification and tracking.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View