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Abstract

Introduction—Familial cerebral cavernous malformation (CCM) patients present with multiple 

lesions that can grow both in number and size over time and are reliably detected on susceptibility-

weighted imaging (SWI). Manual counting of lesions is arduous and subject to high variability. 
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We aimed to develop an automated algorithm for counting CCM microbleeds (lesions <5mm in 

diameter) on SWI images.

Methods—Fifty-seven familial CCM type-1 patients were included in this institutional review 

board-approved study. Baseline SWI (n=57) and follow-up SWI (n=17) were performed on a 3T 

Siemens MR scanner with lesions counted manually by the study neuroradiologist. We modified 

an algorithm for detecting radiation-induced microbleeds on SWI images in brain tumor patients, 

using a training set of 22 manually delineated CCM microbleeds from 2 random scans. Manual 

and automated counts were compared using linear regression with robust standard errors, intra-

class correlation (ICC), and paired t-tests. A validation analysis comparing the automated counting 

algorithm and a consensus read from two neuroradiologists was used to calculate sensitivity, the 

proportion of microbleeds correctly identified by the automated algorithm.

Results—Automated and manual microbleed counts were in strong agreement in both baseline 

(ICC=0.95, p<0.001) and longitudinal (ICC=0.88, p<0.001) analyses, with no significant 

difference between average counts (baseline p=0.11, longitudinal p=0.29). In the validation 

analysis, the algorithm correctly identified 662 of 1325 microbleeds (sensitivity=50%), again with 

strong agreement between approaches (ICC=0.77, p<0.001).

Conclusion—The automated algorithm is a consistent method for counting microbleeds in 

familial CCM patients that can facilitate lesion quantification and tracking.

Keywords

Automated lesion counting; Cerebral cavernous malformations; Microbleeds; Susceptibility-
weighted imaging

Introduction

Cerebral cavernous malformations (CCM) are clusters of abnormally enlarged, leaky 

capillary caverns that occur primarily in the brain and spinal cord, with an estimated 

prevalence of 0.1–0.5% in the general population [1]. Common clinical manifestations of 

CCM include seizures (50%), cerebral hemorrhage (25%), and focal neurological deficits 

(25%) [2]. CCM can occur in a sporadic form or in a familial form with autosomal dominant 

inheritance (10–50%) [3]. Familial CCM cases often present with multiple lesions that can 

be visualized on magnetic resonance imaging as foci of low signal intensity on T2*-

weighted imaging or susceptibility-weighted imaging (SWI). Both the number and size of 

lesions in patients with familial CCM increase with advancing age [4].

The number of CCM lesions correlates with increased expression of angiogenic and growth 

factors [5], and thus has been used as a surrogate biomarker for CCM disease severity in 

several studies [1, 6, 7]. Clinical diagnostic imaging reports often note new lesions, acute 

hemorrhage and edema, and the presence of multiple lesions, which does not fully illustrate 

the magnitude of the problem. Furthermore, change in the number of lesions could 

potentially be used to monitor disease progression in longitudinal studies. Large CCM 

lesions are easily identified upon manual examination. However, manual counting of small 

CCM lesions (< 5mm in diameter), hereafter referred to as microbleeds, in patients with 

familial CCM is an arduous task because of the large number of lesions (~50 lesions on 
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average for adults), the lengthy counting time (20–90 minutes per case), and the high intra- 

and inter-rater variability [8, 9]. Thus, application of an automated counting algorithm for 

microbleeds in patients with familial CCM would be highly desirable.

Several automated algorithms have been proposed to detect microbleeds on SWI images in 

various populations, including Alzheimer’s disease [10], atherosclerotic disease [11], stroke 

[12, 13], traumatic brain injury [14], and brain tumors [15]. These algorithms can be divided 

into two categories: hypothesis-driven approaches that are based on pre-defined geographic 

features (such as shape and size) and data-driven approaches that are based on extracted 

high-level features. In general, hypothesis-driven approaches [11, 12, 14, 15] are relatively 

simple to implement, but rely on limited known physical features of microbleeds. On the 

other hand, data-driven approaches [10, 13]can extract hundreds and thousands of high-level 

features but place higher demands on the computational resources required and may come 

with the risk of over-fitting.

In this study, we sought to adapt and modify a simple microbleed detection algorithm for 

counting CCM microbleeds on SWI images in patients with familial CCM. Our goal was to 

develop an automated counting algorithm with minimal false positives that would yield 

approximately equivalent microbleed counts to manual microbleed counts by experienced 

neuroradiologists to facilitate lesion quantification and tracking in familial CCM.

Materials and Methods

Patients and MRI scans

For this study, we included 57 familial CCM type-1 patients with the common Hispanic 

mutation (CCM1-CHM) who were enrolled in the ongoing Brain Vascular Malformation 

Consortium (BVMC) CCM study (Table 1) [6]. All patients had baseline SWI scans and 17 

had follow-up SWI scans, all performed on a 3T Siemens MR scanner. The imaging 

parameters of the SWI sequence were: in-plane FOV = 25.6 × 19.2 cm, in-plane resolution = 

1.0 × 1.0 mm, axial slice thickness = 1.5 mm, number of slices = 88, flip angle = 15°, pixel 

bandwidth = 120 Hz, TE = 20 ms, TR = 28 ms, parallel imaging factor = 2, and total scan 

time = 4:55 minutes. All participants provided written informed consent, and the study was 

approved by the local institutional review board.

Manual assessment of microbleeds

An experienced neuroradiologist (BH), who was blinded to the results of the automated 

algorithm, manually counted the total number of lesions and the number of large lesions (≥ 

5mm in diameter) on SWI images of all scans. Microbleeds are defined here as CCM lesions 

< 5mm in diameter and are derived as the difference between total lesion count and number 

of large lesions. The neuroradiologist manually delineated the location of 22 microbleeds on 

SWI images of two random scans in order to train the algorithm.

Automated algorithm development

We adapted and modified an existing automated algorithm [15] for detecting CCM 

microbleeds (Fig. 1) in the MATLAB environment (MathWorks, Natick, MA). The 
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algorithm was applied to minimum-intensity-projected SWI images (6-mm projection 

thickness) after brain extraction. The algorithm identified potential microbleeds using a 2-

dimensional fast radial symmetry transform (2D-FRST) based on local intensity gradients, 

where n was number of radii, α was the degree of circularity, prctTH was the percentile 

threshold of image gradient magnitude, and minVesArea was the minimum number of pixels 

any vessel region should contain. The algorithm then screened each voxel using multiple 

thresholds of 2D-FRST values (lowerTH1, lowerTH2, upperTH) and removed false positives 

via vessel masking and examination of geometric features after 3-dimensional region 

growing.

When the original algorithm [15] was applied to 8 scans from CCM1-CHM patients, over 

100 false positives were identified per scan. In one scan, the original automated algorithm 

counted 150 microbleeds where the manual count was 22. In another scan, the original 

automated algorithm counted 96 microbleeds where the manual count was 8. Moreover, the 

automated counts of the other six scans which the radiologist had identified with zero lesions 

were 121, 120, 108, 12, 127, and 107. Therefore, we used 22 delineated microbleeds from 

two randomly-selected scans of CCM1-CHM patients as a training set to empirically 

determine the algorithm parameters with the goal of reducing the number of false positives 

while maintaining high sensitivity. Since CCM microbleeds are larger and less spherical in 

shape than radiation-induced microbleeds and the voxel size of the SWI images differed, our 

strategy was to appropriately modify variables that initially defined the radial symmetry 

transform and then determined thresholds for segmenting the resulting output mask. This 

approach allowed for larger microbleeds with less circularity to be captured in the initial 

detection step and not subsequently removed while reducing false positives. The final 

parameters were: n = 3, α = 3, prctTH = 90, minVesArea = 25, lowerTH1 = 45, lowerTH2 = 

65, upperTH = 170. Potential microbleeds within 3mm from the edge of brain were also 

removed to further reduce false positives.

Validation dataset

Because there is no gold standard for CCM lesion counting, we generated a validation 

dataset on which two neuroradiologists (BH and MM) reviewed and delineated microbleeds 

for a selected single slice (slice 50 ± 2 slices on either side for review) independent of each 

other for 47 baseline scans. These manual counts were then reviewed by consensus reading 

and compared to counts generated by the automated algorithm to determine sensitivity.

Statistical analysis

For the training set of 22 microbleeds in two random scans, false positives (number of 

microbleeds incorrectly counted by automated algorithm), and false negatives (number of 

microbleeds not detected by the automated algorithm) were reported. The manual and 

automated microbleed counts were compared using linear regression with robust standard 

errors to accommodate heteroskedasticity, intra-class correlation, and paired t-test. The 

sensitivity (proportion of microbleeds correctly identified by the automated algorithm), false 

negative rate, linear regression R2, and intra-class correlation based on automated and 

consensus counts in the validation dataset are reported.
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Results

Training scans

For the training set in two random scans, the modified automated algorithm missed 3 out of 

22 microbleeds, and identified an additional 34 microbleeds that were not counted by the 

neuroradiologist. Two of the false negatives were small microbleeds with very low contrast, 

while the third false negative had slightly shifted center across slices (Fig. 2a). Most of the 

false positives were ending, cross-section, or turning points of vessels, and a few false 

positives were thought to be due to SWI artifacts (Fig. 2b).

Baseline scans

In the 57 baseline scans, manual microbleed counts ranged from 0 to 617, whereas the 

automated counts ranged from 11 to 715 (Fig. 3). The computation time for the automated 

algorithm was approximately 1 minute per patient on a one-core Linux workstation with 

Intel Core 2 Extreme CPU X9650 quad processors at 3.0 GHz and 8 GB RAM. There was a 

significant linear relationship between automated and manual counts (R2 = 0.90, p < 0.001). 

The high intra-class correlation coefficient (ICC = 0.95, 95% CI = 0.91 – 0.97, p < 0.001) 

suggested that the two counting methods had high agreement. No statistically significant 

difference was found between the difference of the means of the manual and automated 

counts (p = 0.11, 95% CI = −25.2 – 2.6, paired t-test).

Longitudinal scans

The time interval between baseline and follow-up scans was 39.4 ± 5.3 months. The 

longitudinal change ranged from –11 to 97 in the manual counts (four negatives) and from 

−10 to 87 (four negatives) in the automated counts (Fig. 4). The four negative manual counts 

and the four negative automated counts did not occur in the same patients. A significant 

linear relationship (R2 = 0.77, p < 0.001) and intra-class correlation (ICC = 0.88, 95% CI = 

0.70 – 0.95, p < 0.001) were found in longitudinal changes in microbleed counts between 

manual and automated assessment, also with no statistically significant difference between 

the difference of their means (p = 0.29, 95% CI = −10.9 – 3.49, paired t-test).

Validation analysis

There was high pairwise correlation in counts (>0.95) between the two neuroradiologists and 

between each neuroradiologist and the algorithm (data not shown). A total of 1,325 

microbleeds were identified by consensus review of 47 scans by the two neuroradiologists. 

The algorithm correctly identified 662 of these microbleeds (sensitivity = 0.50), and 

identified 40 false positives with a median of 1 false positive per observation (and a 

maximum of 8). The majority of these false positives (31/40) were determined to be vessels, 

most likely veins. There was a strong positive linear relationship (R2 = 0.94, p<0.001) 

between consensus counts and automated counts; the intra-class correlation was 0.77 (95% 

CI = 0.62 – 0.87, p<0.001), suggesting moderate agreement (Fig. 5). The difference of the 

means of the consensus and automated counts was statistically different (p<0.001, 95% CI = 

9.0 – 17.5, paired t-test), indicating that overall the consensus counts tended to be higher 

than the automated counts.

Zou et al. Page 5

Neuroradiology. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

In this study, we developed an automated algorithm for counting microbleeds in patients 

with familial CCM by modifying an existing algorithm. We found that the number of 

microbleeds counted by our algorithm was significantly correlated with the number counted 

manually by an experienced neuroradiologist in both baseline and longitudinal analyses, and 

by consensus reading of two neuroradiologists in validation analysis. On average, the 

automated algorithm (1 minute per patient) was 50 times faster than manual counting (50 

minutes per patient) and was internally consistent.

A challenging feature of automating CCM lesion counts is their irregular appearance and 

size due to the pathology of disease, resulting in lesions filled with blood and lined with 

sinusoidal endothelium. These lesions also have varying intensity patterns, such as 

heterogeneous reticulated intensity or central high intensity surrounded by low signal [16]. 

In this study, the original algorithm generated over 100 false positives per scan and we 

empirically determined the algorithm parameters with the goal of reducing the number of 

false positives while maintaining a reasonable sensitivity, so that the automated counts 

would be approximately in the same range as compared to the manual counts. The technical 

advance of this algorithm was a significant reduction in the false positive rate for application 

to familial CCM. In a validation dataset of 47 scans with consensus reads by two 

neuroradiologists, the sensitivity of the automated algorithm was 50%, which may be due to 

increased reading sensitivity in the validation dataset compared with the training dataset as 

the neuroradiologists reported afterwards. However, given the significant correlation and 

high agreement between the number of microbleeds counted by the algorithm and by the 

neuroradiologists, our modified automated algorithm shows promise as an alternative 

method to manual microbleed counting, greatly facilitating lesion quantification and 

tracking for future clinical research studies.

A limitation of the current analysis was that the location of the manually counted 

microbleeds was not recorded in detail for all scans due to the large number of lesions. 

There is also no gold standard for manual counting of microbleeds in familial CCM for 

comparison. Thus, we performed a validation dataset in which microbleed counts from the 

automated algorithm were compared to consensus reads by two neuroradiologists to 

determine sensitivity. Automated counts reported in this study consisted of both true 

positives and false positives. In our validation analysis, the false positives identified by the 

algorithm were mostly due to structural features in which the neuroradiologists determined 

the potential microbleed to be vessels. This suggests that the number of false positives from 

the automated algorithm would be similar in both baseline and follow-up scans from the 

same patient and that any changes observed in longitudinal automated counts would reflect 

real differences. The few negative longitudinal changes from both manual and automated 

counts were likely due to random counting error, although resorption of acute hemorrhage 

may result in decreased size of some CCM lesions over time. The wide range of longitudinal 

changes observed over a relatively narrow time interval also suggests that the longitudinal 

change may not only be a function of time but also a function of faster disease progression 

in familial CCM1-CHM patients. Future studies will require further modifications to the 

algorithm and validation to determine the algorithm’s sensitivity.
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In summary, our automated counting algorithm is an inherently consistent method for 

counting microbleeds in patients with familial CCM that could facilitate lesion 

quantification and tracking in clinical research studies, and raises clinical awareness for 

more vigilant imaging surveillance in patients with high number of microbleeds.
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Fig. 1. Schematic flowchart of the automated algorithm
The algorithm appraises the spherical shape of microbleeds by applying a two-dimensional 

fast radial symmetry transform (2D-FRST). The higher the FRST value, the more circular 

the geometry. Pixels with FRST values higher than the threshold upperTH1 are directly 

considered to be potential microbleeds. Other voxels selected by thresholds lowerTH1 and 

lowerTH2 will undergo vessel mask screening, three-dimensional region growing, and 

geometric feature extraction. Application of a vessel mask removes the majority of false 

positives from vessels, while subsequent 3D region growing and geometric feature 

extraction will remove objects with large area, non-circular shape, or shifted centroid among 

multiple slices.
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Fig. 2. Results of the adapted algorithm in the two training SWI scans
(a) 3 false negatives. (b) 2 representative false positives.
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Fig. 3. Scatter plot of manual and automated microbleed counts for the 57 baseline scans
Linear regression R2 = 0.90, p < 0.001. Intra-class r = 0.95, 95% CI = 0.91–0.97, p < 0.001. 

Paired t-test p = 0.11.

Zou et al. Page 11

Neuroradiology. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Scatter plot of longitudinal changes in manual and automated microbleed counts in 17 
patients
Time interval between baseline and follow-up scans was 39.4 +/− 5.3 months. Linear 

regression R2 = 0.76, p < 0.001. Intra-class r = 0.87, 95% CI = 0.70–0.95, p < 0.001. Paired 

t-test p = 0.29.
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Fig. 5. Scatter plot of radiologists’ consensus and automated microbleed counts on a selected 
slice from 47 patients (validation analysis)
Linear regression R2 = 0.94, p<0.001. Intra-class r = 0.77, 95% CI = 0.62 – 0.87, p<0.001.
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Table 1

Clinical characteristics of 57 CCM subjects at baseline

Age at baseline (mean ± sd) 50.1 ± 19.9

Female, n (%) 40 (70%)

History of clinical hemorrhage, n (%) 21 (37%)

History of seizures, n (%) 19 (33%)

History of headaches, n (%) 32 (56%)

Manual microbleed counts, median (min-max) 108 (0–617)
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