- Main
Forward Transport 14-3-3 Binding Overcomes Retention in Endoplasmic Reticulum by Dibasic Signals
Abstract
Proteins with dibasic retention motifs are subject to retrograde transport to endoplasmic reticulum (ER) by COPI-coated vesicles. As forward transport requires escape from ER retention, general release mechanisms have been expected. Here, KCNK3 potassium channels are shown to bear two cytoplasmic trafficking motifs: an N-terminal dibasic site that binds beta-COP to hold channels in ER and a C-terminal "release" site that binds the ubiquitous intracellular regulator 14-3-3beta on a nonclassical motif in a phosphorylation-dependent fashion to suppress beta-COP binding and allow forward transport. The strategy appears to be common. The major histocompatibility antigen class II-associated invariant chain Iip35 exhibits dibasic retention, carries a release motif, and shows mutually exclusive binding of beta-COP and 14-3-3beta on adjacent N-terminal sites. Other retained proteins are demonstrated to carry functional 14-3-3beta release motifs.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-