Skip to main content
eScholarship
Open Access Publications from the University of California

Mapping and controlling ultrafast dynamics of highly excited H2 molecules by VUV-IR pump-probe schemes

Abstract

We used ultrashort femtosecond vacuum ultraviolet (VUV) and infrared (IR) pulses in a pump-probe scheme to map the dynamics and nonequilibrium dissociation channels of excited neutral H2 molecules. A nuclear wave packet is created in the BΣu+1 state of the neutral H2 molecule by absorption of the ninth harmonic of the driving infrared laser field. Due to the large stretching amplitude of the molecule excited in the BΣu+1 electronic state, the effective H2+ ionization potential changes significantly as the nuclear wave packet vibrates in the bound, highly electronically and vibrationally excited B potential-energy curve. We probed such dynamics by ionizing the excited neutral molecule using time-delayed VUV-or-IR radiation. We identified the nonequilibrium dissociation channels by utilizing three-dimensional momentum imaging of the ion fragments. We found that different dissociation channels can be controlled, to some extent, by changing the IR laser intensity and by choosing the wavelength of the probe laser light. Furthermore, we concluded that even in a benchmark molecular system such as H2∗, the interpretation of the nonequilibrium multiphoton and multicolor ionization processes is still a challenging task, requiring intricate theoretical analysis.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View