Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Two-stage maximum likelihood approach for item-level missing data in regression.

Abstract

Psychologists use scales comprised of multiple items to measure underlying constructs. Missing data on such scales often occur at the item level, whereas the model of interest to the researcher is at the composite (scale score) level. Existing analytic approaches cannot easily accommodate item-level missing data when models involve composites. A very common practice in psychology is to average all available items to produce scale scores. This approach, referred to as available-case maximum likelihood (ACML), may produce biased parameter estimates. Another approach researchers use to deal with item-level missing data is scale-level full information maximum likelihood (SL-FIML), which treats the whole scale as missing if any item is missing. SL-FIML is inefficient and it may also exhibit bias. Multiple imputation (MI) produces the correct results using a simulation-based approach. We study a new analytic alternative for item-level missingness, called two-stage maximum likelihood (TSML; Savalei & Rhemtulla, Journal of Educational and Behavioral Statistics, 42(4), 405-431. 2017). The original work showed the method outperforming ACML and SL-FIML in structural equation models with parcels. The current simulation study examined the performance of ACML, SL-FIML, MI, and TSML in the context of univariate regression. We demonstrated performance issues encountered by ACML and SL-FIML when estimating regression coefficients, under both MCAR and MAR conditions. Aside from convergence issues with small sample sizes and high missingness, TSML performed similarly to MI in all conditions, showing negligible bias, high efficiency, and good coverage. This fast analytic approach is therefore recommended whenever it achieves convergence. R code and a Shiny app to perform TSML are provided.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View