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Two-stage maximum likelihood approach for item-level missing
data in regression
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& Victoria Savalei1 & Mijke Rhemtulla2
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Abstract
Psychologists use scales comprised ofmultiple items tomeasure underlying constructs.Missing data on such scales often occur at
the item level, whereas the model of interest to the researcher is at the composite (scale score) level. Existing analytic approaches
cannot easily accommodate item-level missing data when models involve composites. Avery common practice in psychology is
to average all available items to produce scale scores. This approach, referred to as available-case maximum likelihood (ACML),
may produce biased parameter estimates. Another approach researchers use to deal with item-level missing data is scale-level full
information maximum likelihood (SL-FIML), which treats the whole scale as missing if any item is missing. SL-FIML is
inefficient and it may also exhibit bias. Multiple imputation (MI) produces the correct results using a simulation-based approach.
We study a new analytic alternative for item-level missingness, called two-stage maximum likelihood (TSML; Savalei &
Rhemtulla, Journal of Educational and Behavioral Statistics, 42(4), 405–431. 2017). The original work showed the method
outperforming ACML and SL-FIML in structural equation models with parcels. The current simulation study examined the
performance of ACML, SL-FIML, MI, and TSML in the context of univariate regression. We demonstrated performance issues
encountered by ACML and SL-FIML when estimating regression coefficients, under both MCAR and MAR conditions. Aside
from convergence issues with small sample sizes and high missingness, TSML performed similarly to MI in all conditions,
showing negligible bias, high efficiency, and good coverage. This fast analytic approach is therefore recommended whenever it
achieves convergence. R code and a Shiny app to perform TSML are provided.

Keywords Missing data . Item level . Regression . Two stage

Introduction

Psychologists across many subfields often use measures that
are composed of multiple items. For example, the UCLA
Loneliness Scale (Russell, 1996) has 20 items, and the Big
Five Inventory has 8–10 items on each personality dimension.
The composite scale scores computed from these items are
frequently used in analyses such as regression. This applica-
tion is found in a wide range of research topics from the
relationship between personality types and depression
(Dhondt et al., 2013), mind-wandering and attention deficit
disorder (Seli, Smallwood, Cheyne, & Smilek, 2015), to in-
ternet and smartphone addiction (Choi et al., 2015).

When participants filling out a scale answer some but not
all items, the result is item-level missing data. Participants
answering an inventory questionnaire may refuse to answer
questions that they deem too sensitive, leave items blank when
they do not apply, quit the questionnaire early because it is too
long, or skip items due to carelessness. Item-level missing data
presents a particularly difficult problem when the researcher is
interested in fitting a model at the composite level, which
requires thecomputation of composite scores, because it is
not straightforward to compute such scores in the presence
of missing data.

It is common practice for psychologists to deal with item-
level missing data by simply taking the means of available
items. This approach is equivalent to person-mean imputation
and is also known as proration (Mazza, Enders, & Ruehlman,
2015) or available-case analysis (Savalei & Rhemtulla, 2017).
An alternative is to treat the composite score as missing en-
tirely, with all the available items deleted, which we refer to as
scale-level deletion. In reality, researchers often use a hybrid
approach of computingscale scores based on all available
items when their number is above a threshold, and declaring
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the scale score as missing otherwise. The threshold for this
hybrid strategy can vary greatly from one researcher to
another. For example, Culbert, Breedlove, Sisk, and Burt
(2013) computed scale scores based on all available cases
for scales missing 10% of the items or less, and treated the
whole scale as missing whenmore than 10% of the items were
missing, whereas Beebe et al. (2007) applied the same proce-
dure at 50% of the items missing. While methodologists have
long known that such procedures are theoretically unsound
(Schafer & Graham, 2002), simulation studies that investigate
the extent of the bias and under what conditions it arises have
been scarce. In this study, we compare our proposed approach
to both available-case analysis and scale-level deletion.

Several recent studies have compared the performance
of different item-level missing data techniques (Orcan,
2013; Parent, 2013; Mazza et al., 2015; Savalei &
Rhemtulla, 2017). However, until recently, item-level
multiple imputation (item-level MI; Rubin, 1987)
remained the only statistically justified approach that
can deal with item-level missing data. Multiple imputa-
tion fills in (imputes) the missing values based on the
existing data, but incorporating a random component into
each imputed value, often based on distributional as-
sumptions. This procedure is repeated multiple times to
arrive at m complete datasets. The statistical analysis of
interest is then performed on each imputed dataset, and
the estimates are aggregated across imputations. Because
it is a simulation-based approach, MI has properties that
are not desired by some researchers. It can be cumber-
some and difficult to implement for applied researchers,
and it can take a long time, depending on the specific MI
method and the number of imputations requested.
Further, when MI is performed on the same dataset mul-
tiple times, it may produce a slightly different answer
every time. The results may also be sensitive to param-
eters in the implementation of the method such as the
number of imputations performed.

Outside of the context of item-level missing data, MI under
the normal model is largely equivalent to an analytical ap-
proach known as full-information maximum likelihood
(FIML). However, FIML cannot easily handle item-level
missing data when the model is at the composite level (but
see Rose, Wagner, Mayer, & Nagengast, 2019, for a new
approach). In this article, we propose and study a more flex-
ible analytical alternative, called two-stage maximum likeli-
hood (TSML; Yuan & Bentler, 2000; Yuan & Lu, 2008;
Savalei & Bentler, 2009). TSML has recently been extended
to handle item-level missing data (Savalei & Rhemtulla,
2017). The original work on TSML showed good perfor-
mance of the method with item-level missing data that occurs
in the context of structural equation models (SEMs) with par-
cels. However, SEMs with latent variables are quite different
from statistical models many researchers ordinarily use. For

instance, they require large sample sizes, and may perform
quite differently in small samples. SEMs also assume a reflec-
tive rather than a formative model of measurement, requiring
that the set of items conforms to a certain structure
(Rhemtulla, van Bork, & Borsboom, in press). At the same
time, researchers commonly use composites made up of scale
items or other behavioral indicators with small samples and in
simpler analyses such as regression. The current study adapts
the TSML approach to the context of basic univariate regres-
sion, and examines its performance under a large array of
simulation conditions, including small sample sizes that are
more typical in regression settings. For simplicity, we focus on
normally distributed data, but the extension of the TSML
appraoch to nonnormal data is straightforward and will be
considered in future studies.

Missing data mechanisms

Rubin (1987) defined three types of missing data mech-
anisms: missing completely at random (MCAR), missing
at random (MAR), and missing not at random (MNAR).
Under MCAR, the probability of missingness on any
variable is independent of any variable in the dataset,
whether missing or observed. Under MAR, the probabil-
ity of missingness cannot depend on variables with miss-
ing values, conditioning on variables that have been ob-
served. Under MNAR, missingness depends on variables
with missing data even after conditioning on complete
variables. With an additional mild assumption of the in-
dependence between model parameters and the parame-
ters guarding missing data, MCAR and MAR are known
as ignorable missing data mechanisms (Little & Rubin,
2002), because modern missing data techniques such as
FIML and MI can deal with these types of missing data
well, resulting in accurate and efficient estimates.
MNAR, on the other hand, is always nonignorable, so
it is much more difficult to handle. Because dealing with
MNAR requires explicit modeling of the missing data
mechanism on a case by case basis (for example, see
Galimard, Chevret, Protopopescu, & Resche-Rigon,
2016), studies of general techniques for dealing with
missing data are typically limited to the study of the
ignorable mechanisms, MCAR and MAR.

Item-level missing data techniques

Available-case maximum likelihoodAvailable-case maximum
likelihood (ACML) is a popular technique for dealing with
item-level missing data (Mazza et al., 2015) in an SEM con-
text. When a scale has missing item scores, the ACML meth-
od simply takes the mean of all available items for each par-
ticipant as their scale score; the usual maximum likelihood
(ML) on the resulting complete data composites is then
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performed to fit the SEM.1 Obtaining the scale mean from all
available cases is the same as performing person-mean impu-
tation; that is, each participant’s missing values within each
scale are replaced by the mean of that participant’s scores on
the available items on that scale.

Disadvantages of person-mean imputation are well known.
When handling item-level missing data, ACML produces in-
correct standard errors by assuming there is no missing data.
ACML also tends to produce biased mean estimates and to
underestimate relationshipbetween scales under MAR
missingness. ACML may produce biased results even under
MCAR (Schafer & Graham, 2002; Mazza et al., 2015).
However, ACML may produce reasonable parameter esti-
mates in some situations. For example, Mazza et al. (2015)
have shown that if the intercorrelations of all the items are the
same within each scale, and the item means are the same
within the scale, the ACML parameter estimates may be un-
biased under MAR. Even in such an ideal scenario, the
ACML standard errors may be inaccurate. More importantly,
it is often the case that the assumptions of equal item means
and equal item correlations are untenable. Despite its disad-
vantages, ACML is undoubtedly convenient. As a result, re-
searchers may be tempted to assume equal intercorrelations
and equal itemmeans in order to use it. Even under these ideal
conditions, methodologists recommend this approach only for
small amounts of missing data (<10%) (Parent, 2013). The
current study will examine the performance of ACML in the
context of univariate regression in a wide range of conditions.

Scale-level full-information maximum likelihood Full-infor-
mation maximum likelihood (FIML) is a modern method for
analyzing missing data that produces consistent parameter es-
timates under an MAR mechanism. When data are missing at
the item level, scale-level FIML (SL-FIML; Savalei &
Rhemtulla, 2017) is the approach that uses listwise deletion
to compute scale scores followed by FIML at the composite
level. That is, for each participant, if any item is missing, the
whole associated scale is treated as missing. This approach
would clearly result in a significant power loss. However,
there is a far more insidious problem: if the items that the
MAR mechanism depends on (i.e., items that predict
missingness) are deleted as part of the initial listwise deletion,
the missing mechanism becomes MNAR. Under MNAR, SL-
FIML is likely to produce biased estimates.

It has been shown that SL-FIML is sensitive to properties
of the scale. For example, SL-FIML may produce relatively
unbiased estimates when all items within each scale have the
same means across all participants, but biased estimates when

item means differ (Mazza et al., 2015). Mazza et al. (2015)
aimed to address the bias by using some of the items as aux-
iliary variables in the model. However, all items cannot be
used as auxiliary variables in the composite model due to
the resulting linear dependencies among the variables in the
model, e.g., if a scale has 5 items, only 4 can be used as
auxiliary variables. Recently, Rose et al. (2019) have proposed
an ingenious way to implement item-level FIML for a
composite-level model in SEM; however, this approach may
be cumbersome to implement and requires further study.

Multiple imputation Multiple Imputation (MI; Rubin, 1976;
Little, 2017) is another advanced modern method for handling
MAR missingness. Unlike analytical methods such as FIML,
MI produces estimates using a numerical, simulation-based
approach. MI involves three stages: imputation, analysis,
and pooling. During the imputation stage, MI duplicates the
data, and performs random single imputations on each dupli-
cated dataset independently. The imputation stage produces
multiple complete datasets that differ from each other due
tothe randomness in the single imputations. MI then performs
the intended data analysis on each complete dataset. Finally,
MI pools parameter estimates and standard errors across the
datasets using Rubin’s rules (Rubin, 1987). It is straightfor-
ward to handle item-level missingness using MI, because the
composites can easily be computed within each complete
dataset.

Although MI produces consistent and highly efficient esti-
mates, the ideal number of imputations necessary to achieve
good results may be surprisingly large in some situations
(Graham, Olchowski, & Gilreath, 2007). Performing a large
number of imputations requires a long computation time,
which can render the approach less accessible to some re-
searchers. The approach may also be difficult to understand
and implement for applied researchers, as there may be ad-
vanced settings necessary to specify for running the imputa-
tions. Finally, because it is a simulation-based approach, the
estimates and standard errors produced by MI will be slightly
different if the procedure is repeated, or if a different version
of the procedure is implemented. In general, fast analytical
approaches that produce a unique set of estimates are preferred
to MI, when they are possible.

Two-stage maximum likelihood In this article, we study an
alternative analytical approach, known as two-stage maxi-
mum likelihood (TSML). The original TSML approach is a
more flexible alternative to FIML that is applicable to any
situation where there is missing data (Savalei & Bentler,
2009). TSML involves estimating the saturated means and
covariances model (using FIML) for all the variables in
Stage 1, and then fitting the desired model (e.g., regression
or SEM) to the summary statistics obtained from Stage 1 (i.e.,
means and covariances) as if they were obtained from

1 Here we assume no participant is missing all of the items on any of the
composites, so that there is no missing data at the composite level. However,
in practice this is not a problem for the method, because FIML rather than
complete data ML can also be run on the composite scores should some of
them be missing.
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complete data. Doing so requires the computation of robust
standard errors for the model parameter estimates, because the
“naive” standard errors that would be produced by the soft-
ware in Stage 2 assume the data are complete. When the data
are multivariate normal, TSML is not as efficient as FIML, but
the loss of efficiency is small. The TSML approach has been
modified to handle incomplete nonnormal data (Yuan &
Bentler, 2000; Yuan & Lu, 2008) and to use auxiliary vari-
ables (Savalei & Falk, 2014), where it has been shown to do at
least as well as, and sometimes outperform, FIML. TSML
with normal and nonnormal data has been implemented in
the R package lavaan (Rosseel, 2012) under the options
estimator = “ML”, method = “two.stage”.

Recently, Savalei and Rhemtulla (2017) introduced an ex-
tension of the TSML method to handle item-level missing
data. Its chief advantage over ACML and scale-level FIML
is that it does not require first performing listwise deletion or
person-level imputation at the item level. Further, TSML for
item-level data would be preferred to item-level MI because it
is a fast analytical approach that produces unique estimates.
For a large number of imputations, TSML and item-level MI
are expected to be equivalent. Savalei and Rhemtulla (2017)
studied the performance of TSML in the context of SEMswith
parcels. Here, we adapt the TSML extension to the case where
the composite-level model is a simple regression model.
While we study simple univariate regression, the method is
easily generalizable to any number of predictors, or to more
complicated models such as path analysis. Because the TSML
extension to item-level missing data was developed in the
SEM context, in order to apply the TSML approach to regres-
sion models, they will be fit as saturated models via SEM
software. Because this approach is new, it has not yet been
implemented in SEM software, and we provide R code a
Shiny app for its use. Technical details for the TSML exten-
sion to item-level missing data arenow given.

Let X ¼ X 1;X 2;…;X p1

� �0
be the items on the predictor com-

posite, and let Y ¼ Y 1; Y 2;…; Yp2

� �0
be the items on the out-

come composite. All variables are then represented as a p ×
1 vector, Z = (X′, Y′)′, where p = p1 + p2. Let Xc and Yc be the
sum scores for the two scales, respectively, and Zc = (Xc, Yc)

′.
When the model contains m composite variables, p ¼ ∑m

i¼1pi,
and Zc is an m × 1 vector. While the current study only in-
volves the case ofm = 2, the generalized description is includ-
ed for completeness. During Stage 1, the saturated model is fit
to the p items contained in Z to obtain FIML estimates of the
population parameters, which for the saturated model are sim-
ply the p × 1 vector of means, bμp, and the p × p covariance

matrix, bΣp. Let bγ 0 ¼ vechbΣp; bμ0� �
be the (p∗ + p) × 1 vector of

the saturated model parameter estimates, where p* ¼ 1
2 p

pþ 1ð Þ and the “vech” operator selects the nonredundant el-
ements of a covariance matrix columnwise (Magnus &

Neudecker, 1989). From this saturated FIML solution, we also

obtain the associated p∗ × p∗ observed information matrix, bAγ ,

and its inverse, bΩγ ¼ bA−1
γ , which is an estimate of the asymp-

totic covariance matrix of bγ under multivariate normality.
An additional step, Stage 1a, is now necessary to con-

vert the item-level components from Stage 1 to scale-
level components. To perform the conversion, we define
an m × p selection matrix C such that Zc = CZ. For exam-
ple, for two composites containing 3 items each,

C ¼ 1 1 1 0 0 0
0 0 0 1 1 1

� �
. The corresponding saturated model

estimates of the means and the covariance matrix of Zc
are given by bμc ¼ Cbμ, an m × 1 vector, and bΣc ¼ CbΣpC

0
,

a m ×m matrix. We stack these saturated estimates into a

single vector, bδ ¼ vechbΣcbμc

� �
. We then define an additional

transformation matrix CS, obtained from C as follows:

CS
Dþ

m C⨂Cð ÞDp 0
0 C

� �
,where Dp is the duplication ma-

trix of order p, and Dþ
m is the Moore-Penrose inverse of the

duplication matrix of order m (Magnus & Neudecker, 1989).
Then, scale-level saturated estimates are related to the item-

level saturated estimates via the equation, bδ ¼ CSbγ. Finally, the
associated asymptotic covariancematrix ofbδ is obtained from the
item-level asymptotic covariance matrix via the equation,bΩδ ¼ CS

bΩγC
0
S .

During Stage 2, the scale-level model is fit to the estimated
means and covariance matrix of Zc from Stage 1a, i.e., bμc andbΣc, as if the underlying data were complete. Let θ represent
the q × 1 vector of SEMmodel parameters, which are hypoth-
esized to structure the population means and covariance ma-
trix of Zc, i.e., Σc(θ) and μc(θ). To obtain parameter estimates,
we minimize the complete data ML fit function:

FML θð Þ ¼ tr bΣcΣ
−1
c θð Þ

n o
−logjbΣcΣ

−1
c θð Þj

þ bμc−μc θð Þ
� �0

Σ−1
c θð Þ bμc−μc θð Þ

� �
−m:

Let the resulting TSML estimates beeθ, and the correspond-
ing estimates of means and covariances under the hypothe-

sized model eμC ¼ μC

�eθ�andeΣC ¼ ΣC
�eθ�. A consistent esti-

mate of the asymptotic covariance matrix of eθ, accounting for
missing data, is given by the “sandwich” estimator,

eΩθ ¼ eΔ′eH eΔ� �−1 eΔ′eH bΩδ eH eΔ eΔ′eH eΔ� �−1
;

where eΔ ¼ ∂δ θð Þ
∂θ0

���
θ¼eθ is the matrix of model derivatives
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evaluated at eθ, and
eH ¼

:5D
0
m

eΣ−1

c ⊗eΣ−1

c

� �
Dm 0

0 eΣ−1

c

0B@
1CA

is the normal theory weight matrix evaluated at eθ,
which is also the “naive” information matrix from

Stage 2. The matrix product eΔ′eH eΔ� �−1
is the “naive”

covariance matrix of parameter estimates that would be
produced by default under complete-data ML estimation
(Yuan & Bentler, 2000). The expression for the asymp-

totic covariance matrix of eθ given above works for any
general SEM. However, when the hypothesized model is
also saturated, as is the case with any regression model

viewed as an SEM, eΔ is a square invertible matrix, and
the expression can be simplified to:

eΩθ ¼ eΔ� �−1 eH−1 eΔ0� �−1 eΔ0 eH bΩδ0
eH eΔeΔ−1 eH−1 eΔ0� �−1

¼ eΔ� �−1bΩδ
eΔ0� �−1

In other words, when applying TSML to regression,
all that is needed to compute accurate estimates of stan-
dard errors are the scale-level asymptotic covariance
matrix from Stage 1a and the matrix of model deriva-
tives, which captures the one-to-one transformation be-
tween the default saturated model of SEM (i.e., unre-
stricted variances and covariances for all observed vari-
ables) and the saturated model parameterized as a re-
gression model.

Previous simulation studies

The development of the TSML approach can be traced
back to Yuan and Bentler (2000). Motivated by the
need to deal with nonnormal missing data in SEM,
these authors developed asymptotically correct standard
errors and test statistics for FIML and TSML under
MCAR nonnormal data. The MCAR assumption was
required because consistency of FIML estimates under
nonnormality had not yet been established. Yuan and
Bentler (2000) compared FIML and TSML in a simula-
tion study with sample sizes of N = 1000 and N = 2000,
on two variables with varying degree of normality.
MCAR missingness was generated by removing data
on half the cases, with a 50% sample missing rate.
MAR missingness was generated by removing all values
corresponding to the top 50% of the conditioning vari-
able, with a 50% population missing rate. Across all
distributional conditions, FIML and TSML performed

similarly under MCAR and MAR, and further did not
show bias under MAR (Yuan & Bentler, 2000).

Yuan (2009) showed mathematically that FIML retains the
property of consistency under MAR with nonnormal data, as
long as the variables are linearly related to each other. Yuan
and Lu (2008) and Savalei and Bentler (2009) extended and
studied the the TSML approach with MAR data. Savalei and
Bentler (2009) thoroughly evaluated TSML and FIML in a
simulation study with normal data, and Savalei and Falk
(2014) considered nonnormal data. TSML and FIML per-
formed similarly across a range of sample sizes, percent miss-
ing data, and types of missing data mechanisms, with TSML
showing a slight advantage with nonnormal data.

Few studies have investigated methods for item-level
missing data via simulation. Mazza et al. (2015) inves-
tigated the performance of several approaches for item-
level missingness in the context of univariate regression,
where each composite had either 8 or 16 items, with
sample sizes of 200 and 500. MAR was created using
logistic regression with R2 = .4, and for 5%, 15%, and
25% per variable missing rate. A reflective model was
assumed for the items. In the equal loading conditions,
all loadings were .75 (implying item inter-correlations of
.56). In the unequal loading conditions, loadings for
items without missing data were set to .5 instead (im-
plying item inter-correlations of .25 among some items).
In the equal means conditions, item means were all 0. In
the unequal mean conditions, the means of the items
were set to .5 when missing values were present, and
set to 0 otherwise. The study found that when either the
item inter-correlations or item means varied within the
same scale, ACML resulted in biased estimates of the
regression coefficients. This study also included an ap-
proximation to the FIML approach where as many items
as possible were added to the composite model to serve
as auxiliary variables. This approach outperformed
ACML.

Finally, Savalei and Rhemtulla (2017) proposed and
studied the TSML approach to item-level missing data
in the context of SEMs with parcels. The study com-
pared ACML, SL-FIML, MI, and TSML on data gener-
ated from a second-order CFA model with 3 s-orderand
9 first-order factors. The composite model was a 3-
factor model with 9 variables, which were parcels
formed from the 27 indicators of the first-order factors.
Fourteen out of the 27 original variables contained
missing data with 5%, 15%, or 30% missing per vari-
able. The study found that factor loadings were biased
under some types of MAR for both ACML and SL-
FIML, but were not biased for TSML or MI, as would
be theoretically expected.

The goals of the current simulation study are threefold: 1)
to empirically confirm that TSML performs well in the
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context of univariate regression, and in particular that its per-
formance matches that of item-level MI; 2) to investigate the
performance of TSMLwith ordinal as well as continuous data,
and 3) to illustrate the disadvantages of ACML and SL-FIML
yet again, as these methods remain popular among applied
researchers. To facilitate the use of TSML by applied re-
searchers, we also provide R code anda Shiny app with its
implementation.2

Method

Design overview

The current study investigated ACML, SL-FIML, MI, and
TSML in the context of univariate regression. We constructed
8 population models, defined by differences in the value of the
regression coefficient, item intercorrelations, and intercepts. Both
the predictor, X and the dependent variable, Y, were composites
comprised of 8 items. The missing mechanisms studied were
MCAR, strong linear MAR, weak linear MAR, strong nonlinear
MAR, and weak nonlinear MAR. These mechanisms will be
described below. Either 15% or 25% of the values on half of
the items in each composite were missing, resulting in an overall
missingness rate of 7.5% and 12.5%. Sample sizes of 50, 100,
and 200 were studied. We also included three statistical variable
types: continuous, binary, and ordinal with 4 levels. In total,
ACML, SL-FIML, and TSML analyses were conducted on
5 mechanisms × 3 sample sizes × 2 missing rates × 8 population
models × 3 variable types = 720 simulation conditions.
Additionally, MI simulations were conducted on all 240 contin-
uous variable conditions, aswell as a subset of the binary variable
conditions (Model 1 & 8, which contain 60 conditions in total).

Continuous item conditions

The regression model fit to data was Yc =α + βXc + e, where
composite scoresXc and Ycweremeans of the item sets X1,…,
X8 and Y1, . …, Y8, respectively. It is worth noting that while
ACML and SL-FIML explicitly compute these composite
scores, TSML does not. Instead, TSML uses the individual
items directly to obtain Stage 1 means and covariances, and
then converts those to scale-level means and covariances to be
used in Stage 2 (via Stage 1a), thus fitting the model to scale-
level information without ever needing to compute Xc and Yc.

All items were drawn from a multivariate normal distribution
with all item variances equal to 1. Items X1, …, X4 each had a
mean of μ1, with all item intercorrelations of ρ1. Items X5,…, X8
each had a mean of μ2, with all itemintercorrelations of ρ2. The
correlation between each ofX1,…,X4 and each ofX5,…,X8 was

set to
ffiffiffiffiffiffiffiffiffi
ρ1ρ2

p
. Items in Yc had the same structure as items in Xc.

Finally, let σX c be the standard deviation of the composite score
Xc, then the correlation (or covariance) between any pair of indi-
vidual Xi and Yj was is related to the unstandardized

3 regression
coefficient β and the standarddeviation of the composite scale as
follows: ρxy ¼ βσ2

X c
.

In the equal itemmean conditions, μ1 =μ2 = 0. In the unequal
mean conditions, μ1 = 0, and μ2 = .5. In the equal item intercor-
relation conditions, ρ1 = ρ2 = .49. This corresponded to the scale
reliability of .88 (for both X and Y items). In unequal intercorre-
lation conditions, ρ1 = .25 and ρ2 = .64. This corresponded to the
scale reliability of .86. However, in the unequal inter-correlation
conditions, the correlation structure of both sets of items was
notconsistent with a two-factor model, so measurement may be
best thought of as formative.

In the equal intercorrelation conditions, ρxy = .37 was used
to produce conditions with high regression coefficients, and
ρxy = .22 was used to produce conditions with medium regres-
sion coefficients. In order to maintain roughly equivalent ρxys
and βs between equal vs unequal intercorrelation conditions,
ρxy = .32 and ρxy = .18 were used to produce the high and
medium regression correlation conditions, respectively.
Thus, we arrived at a list of 8 models (2 × 2 × 2) by manipu-
lating the regression coefficient (medium, high), intercept
(equal, unequal), and item intercorrelations (equal, unequal).
The exact model parameters are summarized Table 1.

Discrete item conditions

In empirical research, items are typically ordinal. While a
Likert itemwith 5–7 categories can be reasonably approximat-
ed by a continuous variable (Rhemtulla, Brosseau-Liard, &
Savalei, 2012), the performance of the missing data

2 available at https://osf.io/8u9fm/

3 In our models, the standardized and unstandardized regression coefficients
were numerically identical in the population, because the predictor and the
outcome variable had the same population variance. The results reported be-
low are based on the sample unstandardized regression coefficients.

Table 1 Parameters of each population model

Model ρ1 ρ2 μ1 μ2 β α

1 .49 .49 0 0 .40 0

2 .49 .49 0 .5 .40 .15

3 .25 .64 0 0 .37 0

4 .25 .64 0 .5 .37 .16

5 .49 .49 0 0 .67 0

6 .49 .49 0 .5 .67 .08

7 .25 .64 0 0 .65 0

8 .25 .64 0 .5 .65 .09

Note. ρ1 and ρ2 denote the scale intercorrelations. μ1, μ2 denote the item
means. β is the slope of the scale level regression, andα is the intercept of
the scale level regression
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techniques developed for continuous datamay suffer when the
ordinal items contain fewer categories. In order to compare
TSML and other methods under these conditions, we created
the binary conditions and 4-level ordinal conditions by
discretizing continuous items, which were generated using
the same methods described above. For binary item condi-
tions, items were dichotomized at each item’s population
mean, μ. Values that were lower than the item’s population
mean were assigned 1, and 2 otherwise. For ordinal items with
4 levels, two additional thresholds were added at ±1 standard
deviation away from the mean (i.e.,μ − 1 and μ + 1). Note that
as long as the predictor and the outcome variable use the same
scale when converted to numeric values, the population value
of the unstandardized regression coefficient β is unaffected by
which scale we choose. Missingness was subsequently
assigned based on the continuous data prior to discretization,
using methods described below.

Missing data mechanisms

For all missing data mechanisms, item X5 was used as the
conditioning variable for all Xi variables that were missing.
Similarly, Y5 was used as the conditioning variable for missing
Yi variables. Only the first half of the items in X and Y
contained missing values. For each of these variables, missing
data could only occur when the corresponding conditioning
variable was above the specified cutoff. For the rows that
satisfied the cutoff condition, each item was was set to be
missing with a certain probability; missingness for all the
items was created independently rather than jointly, so that
many different missing data patterns would be possible. The
population missing rate in each of the items was assignedto
one of the two conditions, pmis = .15 or pmis = .25, which re-
sulted in an overall missing rate of 7.5% and 12.5%.

In order to examine the effect of variations in the strength
of the MAR mechanism, while holding the overall missing
rate constant, we defined a variable pcutoff, which determined
the probability that a data point is missing when a value is
beyond some specified cutoff. Thus, a higher pcutoff leads to a
stronger MAR mechanism. For example, when pcutoff = 1, the
MAR mechanism becomes deterministic, such that data are
always missing whenever the conditioning variable is beyond
the cutoff. With a very low pcutoff, the cutoff is lower, and the
missing mechanism behaves more like MCAR than MAR.
When pmis = pcutoff, the missing mechanism is MCAR. We
set pcutoff = .8 in strongMAR conditions, and pcuoff = .3 in weak
MAR conditions. Nonlinear MAR conditions followed a sim-
ilar definition, except there were two symmetrical cutoffs on
the conditioning variable, instead of a single cutoff. Thus, data
may be missing when the conditioning variable is above the
upper cutoff and when it is below the lower cutoff.

For any fixed overall probability of missingness and the
strength of the MAR mechanism, the cutoff of the missing

data mechanism must be set to the percentile score q = 1 − p-
mis/pcutoff. For the nonlinear conditions, the percentiles were
qupper = 1 − .5pmis/pcutoff and qlower = 1 − qupper. These percen-
tile scores were then converted into z-scores. Missing data
were created with pmis probability when the value of the con-
ditioning variable was beyond the titz-score cut-off.

Dependent measures

In order to compare ACML, SL-FIML, MI and TSML, we
examined their performance in terms of convergence, bias,
relative efficiency, and 95% confidence interval (CI) coverage

of the estimated unstandardized regression coefficient, bβ. Bias
is defined as the estimate minus the true value (i.e., raw bias),
averaged across all converged replications. Relative efficiency
is defined as the ratio of empirical standard error (ESE) of the
regression coefficient obtained by each method, compared

against TSML. For n replications with estimates bβk , where
k = 1, …, n, ESE is defined as

ESE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1
∑
n

k¼1

bβk−bβ� �2
s

A high ESE indicates the method has a tendency to produce
highly varied results from sample to sample. Since the current
study aims to examine the performance of the new TSML
approach, relative efficiency is defined as an ESE ratio of each
method’s ESE over the ESE of TSML. A ratio greater than 1
implies TSML estimates are more efficient (have smaller
ESEs). Finally, coverage is the percentage of replications in

which the 95% confidence interval (CI) of bβ contained the
true parameter value.

Software implementation

All analyses except multiple imputation were conducted using
the lavaan package (v0.5–23.1097; Rosseel, 2012) in R (R
Core Team, 2016) and custom code for TSML adapted from
Savalei and Rhemtulla (2017).4

Multiple imputation was carried out in the mice pack-
age, with 20 imputations each run, using predictive mean
matching as the imputation method in the continuous
conditions, and logistic regression in the binary condi-
tions. Mean composites were then created from each im-
puted dataset. These mean composites were then ana-
lyzed using the runMI function in the semTools package
using the same model as ACML. This function produces
the pooled regression coefficient estimates and pooled
standard errors (Rubin, 1987).

4 Available at https://osf.io/8u9fm/
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Results

The performance of each method under every condition can
be found in the Supplementary Materials,5 which includes
tables for raw bias, relative bias, relative efficiency, coverage,
and the root mean squared error. Due to space limitations, here
we focus on the two conditions where we would expect to see
the smallest and the biggest differences between the methods.
These are, respectively, Model 1 with 7.5% of overall
missingness, where the regression coefficient was medium

in size, and the scale item intercorrelations and means were
all the same, and Model 8 with 12.5% of overall missingness,
where the regression coefficient is high, and each item has
different item intercorrelations and item means for the first
and second half.

Convergence of the EM algorithm

The TSML approach can break down during Stage 1 if the
saturated model does not converge under the EM algorithm.
That is, the FIML estimates of means and covariances some-
times cannot be obtained. In this study, nonconvergence of
TSML due to the failure ofsaturated FIML at Stage 1 is very

5 Available at https://osf.io/8u9fm/

Table 2 EM Convergence for
Continuous Items Method Missing Model MCAR S.L. MAR S.NL. MAR W.L. MAR W.NL. MAR

TSML 7.5% 1 54 1 16 80 38

2 83 0 6 18 29

3 10 0 3 14 7

4 13 0 6 6 1

5 102 0 28 86 37

6 95 1 4 80 40

7 32 1 2 10 23

8 28 1 6 24 14

12.5% 1 386 268 188 510 318

2 349 268 180 486 327

3 135 98 65 187 86

4 123 115 81 150 95

5 377 257 194 537 354

6 401 281 212 537 327

7 182 179 134 262 146

8 179 179 109 241 179

SL-FIML 7.5% 1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0

8 0 0 0 0 0

12.5% 1 86 0 13 42 83

2 103 0 16 51 86

3 78 0 1 52 94

4 78 0 6 34 83

5 81 0 8 47 72

6 81 0 7 52 67

7 87 0 1 39 62

8 87 0 2 31 91

Note. The number of runs where the EM algorithm did not converge (out of 1000 replications) during Stage 1 of
TSML and during SL-FIML at N = 50. S = Strong, W =Weak, L = Linear, NL =Nonlinear. All other conditions
had close to or less than 1
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notable at N = 50, ranging from about 10% to 50% when the
overall missing rate is at 12.5% (see Table 2).While SL-FIML
sometimes also encounters nonconvergence, it does so to a
much lesser degree, ranging from about 5% to 10% in the
same conditions. Because SL-FIML works with composites
instead of raw items, there is a significant reduction in the
dimensions of the covariance matrix. Convergence of TSML
improves significantly when the overall missing rate is 7.5%.
At a sample size of 100, TSML encountered virtually no con-
vergence issues in any condition. In the discrete conditions,
nonconvergence becomes a severe issue for TSML at N = 50

with 12.5% overall missingness, with nonconvergence fre-
quently in the 30%–40% range in both the binary item condi-
tions and the 4-level ordinal conditions (See Table 3).
However, nonconvergence drops below 10% if either the
missing rate is lowered to 7.5%, or the sample size is increased
to N = 100. These results suggest that practical applications of
TSML may require the use of more sophisticated
implementations of the EM algorithm, especially for small
sample sizes. In the following sections, SL-FIML and
TSML performance is reported based on the average of all
converged runs.

Table 3 EM Convergence for
Ordinal Items Model MCAR S.L. MAR S.NL. MAR W.L. MAR W.NL. MAR

TS 1 485 240 556 509 497

2 Levels 2 492 251 509 502 535

3 528 145 497 484 521

4 503 150 513 494 527

5 465 190 476 450 473

6 438 171 472 468 464

7 500 85 458 500 490

8 501 105 468 487 497

4 Levels 1 490 234 404 499 451

2 468 234 424 472 441

3 471 181 347 501 468

4 478 156 404 510 456

5 422 174 375 453 407

6 434 136 368 453 421

7 457 111 373 473 453

8 443 114 329 496 432

SL-FIML 1 43 0 6 28 35

2 Levels 2 42 0 7 31 37

3 37 0 2 20 30

4 47 0 1 24 33

5 53 0 2 19 46

6 52 0 3 30 41

7 38 0 0 28 39

8 42 0 2 13 51

4 Levels 1 23 0 5 12 29

2 22 0 8 18 30

3 23 0 0 18 20

4 39 0 2 16 32

5 23 0 4 27 32

6 40 0 1 10 31

7 39 0 1 8 33

8 40 0 1 14 27

Note. The number of runs where the EM algorithm did not converge on categorical items (out of 1000 replica-
tions) during Stage 1 of TSML and during SL-FIML atN = 50 and missing at 12.5%. S = Strong, W =Weak, L =
Linear, NL =Nonlinear. TSML and SL-FIML showed comparable or higher nonconvergence at 7.5% in the
ordinal conditions compared to the continuous conditions, but the nonconvergence is below 10% in all cases.
All other conditions had close to or less than 1% nonconvergence (10 out of 1000 runs)

2314 Behav Res  (2020) 52:2306–2323



Continuous item conditions

Results under MCAR The top, middle, and bottom panels of
Fig. 1 show the bias, coverage, and relative efficiency of the
unstandardized regression coefficient estimates. As a remind-
er, Model 1 in the study contains equal item intercorrelations,
equal item means, and a medium regression coefficient (more
specifically, ρ1 = ρ2 = .49, μ1 = μ2 = 0, β = .40). Model 1 rep-
resents the intersection of the most ideal conditions suggested
by previous studies. In the left panels, we show how each
method performs under Model 1 with 7.5% missing.
Although it is unrealistic, it acts as a useful benchmark: Any
performance issue under such conditions should be deemed
unacceptable. In contrast, Model 8 contains unequal item

intercorrelations, unequal item means, and a high regression
coefficient (ρ1 = .25, ρ2 = .64, μ1 = 0, μ2 = .5, β = .65). This is
a more complex model that represents a more realistic situa-
tion, with a higher potential for bias. The right panels present
Model 8 with 12.5% missing, in order to demonstrate how
methods may be expected to break down in practice.

We can see that all methods show comparable perfor-
mances overall for Model 1 with a 7.5% missing rate. The
only notable difference is that SL-FIML, which is the least
efficient approach, has a less than ideal coverage rate of
89.2% at N = 50. InModel 8 with a 12.5% missing rate, all
methods show negative bias at N = 50, with MI showing the
least bias. For SL-FIML and TSML, the notable bias appears
to be the result of convergence issues, as the bias disappears
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Fig. 1 Performance comparison for continuous items, under MCAR in
Model 1 (left) and Model 8 (right). IC: Item intercorrelations. MR:
Missing rate. β: The unstandardized regression coefficient. Empirical

standard error (ESE) ratio: The relative efficiency of each method is
measured against TSML, by taking the ESE of that method, divided by
the ESE of TSML.
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entirely once the sample size reaches N = 100. In ACML,
however, the bias persists at all levels of sample size condi-
tions, leading to poor coverage. While SL-FIML and TSML
both show good coverage at N = 200, SL-FIML is once again
less efficient. Although it produces unbiased estimates, SL-
FIML shows comparable coverage to ACML at N = 100. MI
and TSML show comparable performances at N = 100 and
N = 200.

Results under strong MAR In Figs. 2 and 3, we see that TSML
and MI are largely unbiased under strong MAR conditions.
For Model 8 with 12.5%missing atN = 50, TSML encounters
convergence issues, which results in slightly lower levels of
coverage (91.5% and 90.9%). However, the method achieves

ideal coverage as long as the sample size is larger. While SL-
FIML shows the exact same pattern of underestimation, it also
produces higher standard errors in those cases, which leads to
slightly better coverage. ACML and SL-FIML produce nota-
ble underestimates for both models, with a larger bias in non-
linear than linear conditions. Although the bias is consistent
across all sample sizes, the coverage becomes worse as these
methods become more confidentin the incorrect estimates. At
N = 200, the ACML coverage forModel 8 is practically 0. The
SL-FIML performance, while not as poor, is also
unsatisfactory.

Results under weak MAR Similar to the strong MAR condi-
tions, MI and TSML show similar performance under both
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Fig. 2 Performance comparison for continuous items, under strong linear
MAR in Model 1 (left) and Model 8 (right). IC: Item intercorrelations.
MR: Missing rate. β: The unstandardized regression coefficient.

Empirical standard error (ESE) ratio: The relative efficiency of each
method is measured against TSML, by taking the ESE of that method,
divided by the ESE of TSML.
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linear and nonlinear weak MAR (Fig. 4 and Fig. 5), with the
exception of Model 8 at 12.5% missing, where TSML runs
into convergence issues at N = 50. For weak MAR conditions
with convergence issues, the TSML coverage are 85.2%
(linear) and 86.6% (nonlinear).

Under linear weak MAR, SL-FIML and ACML are
both inefficient, even for Model 1 at 7.5% missing.
While SL-FIML is only slightly biased at N = 50, ACML
consistently underestimates the regression coefficient. For
Model 8 with 12.5% missing, SL-FIML overestimates the
regression coefficient, showing both bad coverage and low
efficiency. ACML also overestimates the parameter in the
same model, but to a lesser extent. The ACML coverage is
similar to that of MI and TSML due to its high standard
error, but the approach suffers in efficiency as a result.

Under nonlinear weak MAR, ACML shows similar per-
formance issues as strong nonlinear MAR in both models.
The method produces a consistent underestimate, which
leads to worsening coverage as the sample size grows.
SL-FIML produces underestimates under Model 1, with
mediocre coverage. Under Model 8, it produces more ac-
curate estimates, although its coverage is low even at N =
100, due to its inefficiency.

Discrete item conditions

The performance of each method with ordinal items is
largely similar to the performance with continuous items,
except at N = 50 and overall missing rate of 12.5%. In
these conditions, TSML encounters a large number of
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Fig. 3 Performance comparison for continuous items, under strong
nonlinear MAR in Model 1 (left) and Model 8 (right). IC: Item intercor-
relations.MR:Missing rate. β: The unstandardized regression coefficient.

Empirical standard error (ESE) ratio: The relative efficiency of each
method is measured against TSML, by taking the ESE of that method,
divided by the ESE of TSML.
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convergence issues, resulting in biased estimates and un-
acceptably wide confidence intervals. The bias is less in
the strong linear MAR condition than other conditions, but
the relative bias can reach minus 20% under weak linear
MAR. The performance of ACML improves slightly under
the MAR conditions. For direct comparison to the contin-
uous conditions, Figs. 6 and 7 show the performance of
ACML, SL-FIML, MI, and TSML under the strong linear
MAR and strong nonlinear MAR with binary items. It is
remarkable that TSML does well with discrete data (with
the exception of the conditions outlined above) because
this method does assume continuous normal data at the
item level. MI shows a slightly lower coverage overall,
occasionally drops down to 92%.

Discussion

When data are missing at the item level but the model is at the
composite level, the usual FIML approach to the treatment of
missing data is not easily available. The current study com-
pared an alternative analytical approach known as TSML
(Yuan & Bentler, 2000), which has recently been extended
to item-level missing data (Savalei & Rhemtulla, 2017), and
two procedures popular among applied researchers, ACML
and SL-FIML, in the context of univariate regression. Item-
level MI was also included as a comparison method. A wide
array of simulation conditions was studied, including different
missing data rates, types of missing data mechanism, popula-
tion models, sample size, and type of items (continuous,
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Fig. 4 Performance comparison for continuous items, under weak linear
MAR in Model 1 (left) and Model 8 (right). IC: Item intercorrelations.
MR: Missing rate. β: The unstandardized regression coefficient.

Empirical standard error (ESE) ratio: The relative efficiency of each
method is measured against TSML, by taking the ESE of that method,
divided by the ESE of TSML.
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binary, or 4-category). In accordance with theoretical expec-
tations, TSML and MI performed best, and ACML and SL-
FIML exhibited serious problems under some conditions.

We recommend the TSML or theMI approach for item-level
missingness. TheMI approach produced unbiased and efficient
estimates and good coverage across all study conditions. TSML
approach had essentially identical performance except in con-
ditions where the EM algorithm was not able to converge dur-
ing Stage 1 (i.e., when estimating the saturated covariance ma-
trix of the items) in many replications. These convergence is-
sues occurred at the smallest studied sample and with the
highest rate of missingness. Future research will investigate
whether the convergence of the EM algorithm can be improved
by adjusting the starting values or using different software pack-
ages to see if a more effective implementation exists.

While it was theoretically expected that MI and TSML
would perform similarly with continuous data, as they are
expected to be asymptotically equivalent when the number
of imputations is large, it was remarkable that TSML did very
well with binary and 4-category data as well, performing in-
distinguishably from categorical MI (outside of problems with
convergence in select conditions). Existing recommendations
for use of continuous methods with categorical data is that the
items should have at least 5–7 categories (Rhemtulla et al.,
2012). It appears, however, that when the model is at the
composite level, items comprising the composites can
be treated as continuous even when they have fewer
categories. Similar results have been found in the con-
text of MI, which are consistent with previous research
(Wu, Jia, & Enders, 2015).
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Fig. 5 Performance comparison for continuous items, under weak
nonlinear MAR in Model 1 (left) and Model 8 (right). IC: Item intercor-
relations.MR:Missing rate. β: The unstandardized regression coefficient.

Empirical standard error (ESE) ratio: The relative efficiency of each
method is measured against TSML, by taking the ESE of that method,
divided by the ESE of TSML.
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The key difference between the two recommended
methods is that TSML, as an analytical alternative, pro-
vides the same answer every time, while MI, as a
simulation-based approach, produces different answers.
Furthermore, MI can take up a substantially longer com-
putational time, especially with ordinal data, and it is not
always straightforward to implement for applied re-
searchers. Thus, we believe researchers may prefer the
analytical alternative (TSML) to conducting MI when
this method converges. For researchers interested in ap-
plying the TSML approach, an implementation in R is
available on OSF.6 This online material also includes a
Shiny app (RStudio, Inc, 2013).

When researchers encounter item-level missing data, they
may be tempted to use the ACML approach (i.e., person-level
imputation) or the SL-FIML approach due to their conve-
nience. However, the current study adds to the body of evi-
dence that suggests that the ACML approach comes with sub-
stantial risks (e.g., Schafer & Graham, 2002; Enders, 2003;
Mazza et al., 2015). When data are MCAR, the bias in the
regression coefficient by ACML is reasonably small, and may
not have a serious impact if the regression coefficient is low
and the missing rate is also very low. However, even small
underestimation can lead to unacceptable coverage with a
larger missing rate or high regression coefficient, especially
when the item intercorrelations are not equal. More critically,
under strong MAR, ACML may drastically underestimate the
regression coefficient, and have very poor coverage as a result.6 https://osf.io/8u9fm/

0.4

0.3

0.2

0.1

0.0

0.1

50 100 200

B
ia

s

Equal Means, Equal ICs, 7.5% MR, =.4

0

25

50

75

100

50 100 200

C
ov

er
ag

e

1

2

3

4

5

50 100 200
Sample Size

E
S

E
 R

at
io

0.4

0.3

0.2

0.1

0.0

0.1

50 100 200

Unequal Means, Unequal ICs, 12.5% MR, =.65

0

25

50

75

100

50 100 200

Method

ACML

SL FIML

MI

TSML

1

2

3

4

5

50 100 200
Sample Size

Fig. 6 Performance comparison for binary items, under strong linear
MAR in Model 1 (left) and Model 8 (right). IC: Item intercorrelations.
MR: Missing rate. β: The unstandardized regression coefficient.

Empirical standard error (ESE) ratio: The relative efficiency of each
method is measured against TSML, by taking the ESE of that method,
divided by the ESE of TSML.
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Under weak MAR, ACML has reasonable performance in the
linear-MAR condition, but quite poor performance in the
nonlinear-MAR condition. While SL-FIML is able to produce
unbiased estimates under MCAR, it is inefficient. It also has
low coverage at smaller sample sizes, which suggests that
while the long run average estimate is unbiased, the loss of
information due to discarding a lot of data is too great to
produce accurate standard errors at small sample sizes.
UnderMAR conditions, SL-FIML also tends to underestimate
the regression coefficient and show inadequate coverage.
Another potential rationale for the application of ACML of
SL-FIML is that item scores are typically ordinal in nature.
Intuitions may suggest that ACML and SL-FIML would alle-
viate this problem by creating a total score that more closely
approximates a continuous score. However, the results of the

current study do not support this intuition. Although ACML
and SL-FIML performed slightly better with binary and 4-
category data, their performances were still unsatisfactory,
suffering from the same patterns of biased estimates, low cov-
erage, and low efficiency.

The current study only examined univariate regression;
however, because the theoretical properties of TSML (consis-
tency under MAR, high efficiency) are better than those of
ACML and SL-FIML, we expect that TSML will outperform
these other methods in the context of multiple regression or
other models. Of course, the degree to which bias and loss of
efficiency will manifest in more complex models can differ. In
particular, univariate regression without auxiliary variables is
the worst-case scenario for SL-FIML, as the conditioning var-
iable is always deleted at the item-level when data are missing,
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Fig. 7 Performance comparison for binary items, under strong nonlinear
MAR in Model 1 (left) and Model 8 (right). IC: Item intercorrelations.
MR: Missing rate. β: The unstandardized regression coefficient.

Empirical standard error (ESE) ratio: The relative efficiency of each
method is measured against TSML, by taking the ESE of that method,
divided by the ESE of TSML.
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resulting in MNAR missingness. If all conditioning variables
happen to be outside of composite scores with missing data,
SL-FIML should provide unbiased estimates, with only a loss
of efficiency. More complex models will provide the oppor-
tunity to investigate the performance of the method between
the worst-case scenario and the ideal scenario.

All methods discussed in this paper assume a linear
relationship between the predictor and the outcome vari-
able. In the presence of nonlinear effects, each approach
must modify the model accordingly. In order to include a
nonlinear effect (such as a quadratic effect) under the
TSML or MI approaches, the nonlinear terms (e.g., squares
of each item and cross-products of items on the same com-
posite) must be added to the model during Stage 1 (for TS)
or during the imputation stage (for item-level MI). With
MI, while it may seem that nonlinear effects can be added
during the analysis stage, such an approach is not recom-
mended (Seaman, Bartlett, & White, 2012).

In the current study, the composites were not explicitly
conceptualized as reflective, though the item correlation struc-
tures were consistent with reflective models in some models
(equal inter-correlations). TSML can be applied to composites
that are either formative or reflective. This differs from the
previous study which applied the method in the context of
SEMs with parcels (Savalei & Rhemtulla, 2017). As regres-
sion models are very common in psychological research, we
believe our application has high relevance for applied
researchers.
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