- Main
Mitochondrial Zn2+ Accumulation: A Potential Trigger of Hippocampal Ischemic Injury
Published Web Location
https://doi.org/10.1177/1073858418772548Abstract
Ischemic stroke is a major cause of death and disabilities worldwide, and it has been long hoped that improved understanding of relevant injury mechanisms would yield targeted neuroprotective therapies. While Ca2+ overload during ischemia-induced glutamate excitotoxicity has been identified as a major contributor, failures of glutamate targeted therapies to achieve desired clinical efficacy have dampened early hopes for the development of new treatments. However, additional studies examining possible contributions of Zn2+, a highly prevalent cation in the brain, have provided new insights that may help to rekindle the enthusiasm. In this review, we discuss both old and new findings yielding clues as to sources of the Zn2+ that accumulates in many forebrain neurons after ischemia, and mechanisms through which it mediates injury. Specifically, we highlight the growing evidence of important Zn2+ effects on mitochondria in promoting neuronal injury. A key focus has been to examine Zn2+ contributions to the degeneration of highly susceptible hippocampal pyramidal neurons. Recent studies provide evidence of differences in sources of Zn2+ and its interactions with mitochondria in CA1 versus CA3 neurons that may pertain to their differential vulnerabilities in disease. We propose that Zn2+-induced mitochondrial dysfunction is a critical and potentially targetable early event in the ischemic neuronal injury cascade, providing opportunities for the development of novel neuroprotective strategies to be delivered after transient ischemia.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-