Skip to main content
Download PDF
- Main
Vitreoretinal Surgical Instrument Tracking in Three Dimensions Using Deep Learning
Abstract
Purpose
To evaluate the potential for artificial intelligence-based video analysis to determine surgical instrument characteristics when moving in the three-dimensional vitreous space.Methods
We designed and manufactured a model eye in which we recorded choreographed videos of many surgical instruments moving throughout the eye. We labeled each frame of the videos to describe the surgical tool characteristics: tool type, location, depth, and insertional laterality. We trained two different deep learning models to predict each of the tool characteristics and evaluated model performances on a subset of images.Results
The accuracy of the classification model on the training set is 84% for the x-y region, 97% for depth, 100% for instrument type, and 100% for laterality of insertion. The accuracy of the classification model on the validation dataset is 83% for the x-y region, 96% for depth, 100% for instrument type, and 100% for laterality of insertion. The close-up detection model performs at 67 frames per second, with precision for most instruments higher than 75%, achieving a mean average precision of 79.3%.Conclusions
We demonstrated that trained models can track surgical instrument movement in three-dimensional space and determine instrument depth, tip location, instrument insertional laterality, and instrument type. Model performance is nearly instantaneous and justifies further investigation into application to real-world surgical videos.Translational relevance
Deep learning offers the potential for software-based safety feedback mechanisms during surgery or the ability to extract metrics of surgical technique that can direct research to optimize surgical outcomes.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
If you recently published or updated this item, please wait up to 30 minutes for the PDF to appear here.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%