- Main
Ultrathin Titanium Nitride Epitaxial Structures for Tunable Infrared Plasmonics
Abstract
Titanium nitride (TiN) is an ideal material for infrared plasmonics due to its excellent optical properties, high melting temperature, mechanical and chemical stabilities, and bio- and CMOS compatibilities. In this work, we demonstrate that ultrathin and scalable TiN epitaxial structures can be applied for tunable infrared plasmonics, extending into near- to mid-infrared spectral regions. The ultrathin (111)-oriented TiN epitaxial films studied here were grown on c-plane sapphire wafers without any wetting layer by ultrahigh-vacuum nitrogen-plasma-assisted molecular-beam epitaxy. This method allows for stoichiometric TiN growth without the issue of contamination (especially oxygen) in conventional TiN growth techniques. Structural analyses for these films validate their single-crystalline properties with continuous film morphologies down to a few nanometers in thickness. Furthermore, the frequency-tunable (wavelength range: 1-4 μm) plasmonic metasurfaces have been demonstrated by controlling surface plasmon resonances via lithographically patterning of ultrathin TiN epitaxial films with varying thicknesses (4-30 nm) and grating structure parameters (pitch: 300-1200 nm, width: 200-800 nm). The tunable plasmonic metasurfaces based on ultrathin TiN epitaxial films hold great promise for emerging infrared plasmonic applications, such as thermal photovoltaics requiring narrow-band emitters, photodetectors, and biosensors in the near- and mid-infrared spectral regions.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-