- Main
A novel method for credit scoring based on feature transformation and ensemble model.
Published Web Location
https://doi.org/10.7717/peerj-cs.579Abstract
Credit scoring is a very critical task for banks and other financial institutions, and it has become an important evaluation metric to distinguish potential defaulting users. In this paper, we propose a credit score prediction method based on feature transformation and ensemble model, which is essentially a cascade approach. The feature transformation process consisting of boosting trees (BT) and auto-encoders (AE) is employed to replace manual feature engineering and to solve the data imbalance problem. For the classification process, this paper designs a heterogeneous ensemble model by weighting the factorization machine (FM) and deep neural networks (DNN), which can efficiently extract low-order intersections and high-order intersections. Comprehensive experiments were conducted on two standard datasets and the results demonstrate that the proposed approach outperforms existing credit scoring models in accuracy.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-