- Main
MicroRNA miR-128 represses LINE-1 (L1) retrotransposition by down-regulating the nuclear import factor TNPO1.
Published Web Location
https://doi.org/10.1074/jbc.m117.807677Abstract
Repetitive elements, including LINE-1 (L1), comprise approximately half of the human genome. These elements can potentially destabilize the genome by initiating their own replication and reintegration into new sites (retrotransposition). In somatic cells, transcription of L1 elements is repressed by distinct molecular mechanisms, including DNA methylation and histone modifications, to repress transcription. Under conditions of hypomethylation (e.g. in tumor cells), a window of opportunity for L1 derepression arises, and additional restriction mechanisms become crucial. We recently demonstrated that the microRNA miR-128 represses L1 activity by directly binding to L1 ORF2 RNA. In this study, we tested whether miR-128 can also control L1 activity by repressing cellular proteins important for L1 retrotransposition. We found that miR-128 targets the 3' UTR of nuclear import factor transportin 1 (TNPO1) mRNA. Manipulation of miR-128 and TNPO1 levels demonstrated that induction or depletion of TNPO1 affects L1 retrotransposition and nuclear import of an L1-ribonucleoprotein complex (using L1-encoded ORF1p as a proxy for L1-ribonucleoprotein complexes). Moreover, TNPO1 overexpression partially reversed the repressive effect of miR-128 on L1 retrotransposition. Our study represents the first description of a protein factor involved in nuclear import of the L1 element and demonstrates that miR-128 controls L1 activity in somatic cells through two independent mechanisms: direct binding to L1 RNA and regulation of a cellular factor necessary for L1 nuclear import and retrotransposition.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-