Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Speckle Plethysmograph-Based Blood Pressure Assessment

Abstract

Continuous non-invasive blood pressure (CNBP) monitoring is of the utmost importance in detecting and managing hypertension, a leading cause of death in the United States. Extensive research has delved into pioneering methods for predicting systolic and diastolic blood pressure values by leveraging pulse arrival time (PAT), the time difference between the proximal and distal signal peaks. The most widely employed pairing involves electrocardiography (ECG) and photoplethysmography (PPG). Possessing similar characteristics in terms of measuring blood flow changes, a recently investigated optical signal known as speckleplethysmography (SPG) showed its stability and high signal-to-noise ratio compared with PPG. Thus, SPG is a potential surrogate to pair with ECG for CNBP estimation. The present study aims to unlock the untapped potential of SPG as a signal for non-invasive blood pressure monitoring based on PAT. To ascertain SPG’s capabilities, eight subjects were enrolled in multiple recording sessions. A third-party device was employed for ECG and PPG measurements, while a commercial device served as the reference for arterial blood pressure (ABP). SPG measurements were obtained using a prototype smartphone-based system. Following the completion of three scenarios—sitting, walking, and running—the subjects’ signals and ABP were recorded to investigate the predictive capacity of systolic blood pressure. The collected data were processed and prepared for machine learning models, including support vector regression and decision tree regression. The models’ effectiveness was evaluated using root-mean-square error and mean absolute percentage error. In most instances, predictions utilizing (Formula presented.) exhibited comparable or superior performance to (Formula presented.) (i.e., SPG Rest ± 12.4 mmHg vs. PPG Rest ± 13.7 mmHg for RSME, and SPG 8% vs. PPG 9% for MAPE). Furthermore, incorporating an additional feature, namely the previous SBP value, resulted in reduced prediction errors for both signals in multiple model configurations (i.e., SPG Rest ± 12.4 mmHg to ±3.7 mmHg for RSME, and SPG Rest 8% to 3% for MAPE). These preliminary tests of SPG underscore the remarkable potential of this novel signal in PAT-based blood pressure predictions. Subsequent studies involving a larger cohort of test subjects and advancements in the SPG acquisition system hold promise for further improving the effectiveness of this newly explored signal in blood pressure monitoring.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View