Skip to main content
Download PDF
- Main
The polyhedral tree complex
© 2022 by the author(s). Learn more.
Abstract
The tree complex is a simplicial complex defined in recent work of Belk, Lanier, Margalit, and Winarski with applications to mapping class groups and complex dynamics. This article introduces a connection between this setting and the convex polytopes known as associahedra and cyclohedra. Specifically, we describe a characterization of these polytopes using planar embeddings of trees and show that the tree complex is the barycentric subdivision of a polyhedral cell complex for which the cells are products of associahedra and cyclohedra.
Mathematics Subject Classifications: 05C05, 05C10, 20F65, 52B11
Keywords: Associahedra, cyclohedra, planar trees, mapping class groups
Main Content
For improved accessibility of PDF content, download the file to your device.
If you recently published or updated this item, please wait up to 30 minutes for the PDF to appear here.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%