Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimers disease.

Abstract

Alzheimers disease (AD) is influenced by both genetic and environmental factors; thus, brain epigenomic alterations may provide insights into AD pathogenesis. Multiple array-based Epigenome-Wide Association Studies (EWASs) have identified robust brain methylation changes in AD; however, array-based assays only test about 2% of all CpG sites in the genome. Here, we develop EWASplus, a computational method that uses a supervised machine learning strategy to extend EWAS coverage to the entire genome. Application to six AD-related traits predicts hundreds of new significant brain CpGs associated with AD, some of which are further validated experimentally. EWASplus also performs well on data collected from independent cohorts and different brain regions. Genes found near top EWASplus loci are enriched for kinases and for genes with evidence for physical interactions with known AD genes. In this work, we show that EWASplus implicates additional epigenetic loci for AD that are not found using array-based AD EWASs.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View