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ARTICLE

A machine learning approach to brain epigenetic
analysis reveals kinases associated with
Alzheimer’s disease
Yanting Huang1,11, Xiaobo Sun2,11,12✉, Huige Jiang3, Shaojun Yu1, Chloe Robins4, Matthew J. Armstrong5,

Ronghua Li5, Zhen Mei4, Xiaochuan Shi6, Ekaterina Sergeevna Gerasimov 4, Philip L. De Jager 7,

David A. Bennett8, Aliza P. Wingo 9,10, Peng Jin 5, Thomas S. Wingo 4,5,12✉ & Zhaohui S. Qin 3,12✉

Alzheimer’s disease (AD) is influenced by both genetic and environmental factors; thus, brain

epigenomic alterations may provide insights into AD pathogenesis. Multiple array-based

Epigenome-Wide Association Studies (EWASs) have identified robust brain methylation

changes in AD; however, array-based assays only test about 2% of all CpG sites in the

genome. Here, we develop EWASplus, a computational method that uses a supervised

machine learning strategy to extend EWAS coverage to the entire genome. Application to six

AD-related traits predicts hundreds of new significant brain CpGs associated with AD, some

of which are further validated experimentally. EWASplus also performs well on data collected

from independent cohorts and different brain regions. Genes found near top EWASplus loci

are enriched for kinases and for genes with evidence for physical interactions with known AD

genes. In this work, we show that EWASplus implicates additional epigenetic loci for AD that

are not found using array-based AD EWASs.
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A lzheimer’s disease (AD) is an age-dependent, neurode-
generative disorder, the leading cause of dementia, and a
major public health concern world-wide1. AD is a com-

plex illness due to environmental and genetic factors with a
heritability of ~70%2,3. Compared to genome-wide association
studies (GWASs), there are relatively fewer studies examining
AD-associated epigenetic changes in the human brain. Yet,
understanding epigenetic changes in the brain is important
because they will likely illuminate both heritable and environ-
mental aspects of AD pathogenesis. One of the most well-
described epigenetic changes, DNA methylation (DNAm), is
strongly linked with transcription regulation4, is heritable5, and
notably changes in response to environmental exposure6–8, such
as smoking9,10. Important for AD and other age-dependent ill-
nesses, it is also known to change with age11.

Epigenome-wide association studies (EWASs) use array-based
assays to test whether DNAm at particular CpG sites (abbreviated
CpGs hereafter) is associated with a disease12–15. Multiple AD
EWASs have identified differential DNAm associated with AD in
different regions of the human brain, including prefrontal cortex
(PFC)16, entorhinal cortex (EC), superior temporal gyrus (STG),
cerebellum (CER)17, temporal pole region, temporal cortex, glia,
neuron nuclei, non-neuronal nuclei18, and superior temporal
gyrus19. These works revealed AD-associated differential DNAm
such as those near ANK116,19 and CDH2316,17, which are distinct
from AD GWAS signals. Although these studies have identified
new AD-associated genes, array-based methods are limited
because they only test about 2–3% of all CpGs in the human
genome and have known technical limitations20. To overcome
these challenges, we tested whether a machine learning approach
could be used to identify additional AD-associated CpGs on a
genome-wide scale.

In this work, we construct a supervised machine learning (ML)
binary classifier named EWASplus to identify CpGs associated
with AD. Given that epigenetic features and DNAm status are
interconnected, we hypothesize that we can identify AD-
associated CpGs using genomic and epigenetic features. Train-
ing data are derived from array-based EWASs, and features
include relevant genomic and epigenomic profiling data (e.g.,
chromatin accessibility, histone modifications). After model
training, we apply the trained model to the entire genome to
identify additional AD-associated CpGs. Finally, we perform
targeted bisulfite sequencing experiments to validate our in silico
predictions. We find the highest rate of AD association for
regions harboring putative CpGs predicted by EWASplus (65.8%;
25 out of 38), follow by CpGs known to associate with AD by
methylation arrays (60.0%; 6 out of 10). Experimental validation
shows predicted CpGs are 2.2 times more likely to be associated
with AD (p < 1:00 ´ 10�9) than negative control CpGs. These
results suggest EWASplus is capable of providing credible infor-
mation to identify additional AD-associated CpGs.

Results
EWASplus overview. The goal of EWASplus is to identify
additional disease-associated CpGs that are not included on the
methylation arrays. Currently, the most popular methylation
arrays only represent 2–3% of all CpGs in the human genome.
EWASplus aims to increase the number of CpGs tested in EWASs
to a genome-wide scale. A comparison of CpG coverage between
the 450K methylation array and EWASplus is shown in Supple-
mentary Fig. 1. Standard EWAS operates under a testing frame-
work, but EWASplus frames the problem as a supervised learning
(i.e., classification) framework. The EWASplus approach (Fig. 1)
is to (1) use summary statistics from array-based EWASs to
classify all CpGs on the array into either trait-associated (positive)

or neutral (negative) group; (2) perform feature selection to
identify the most informative features from a collection of 2256
genomic and epigenomic annotations; (3) train an ensemble
learning model capable of identifying CpGs for trait association;
and (4) score all CpGs in the entire genome to identify additional
trait-associated CpGs not present on the array.

To prepare the training set, EWASplus gathers the most
significant CpGs identified from array-based EWAS to form a
positive training set. To reflect the fact that there are far fewer
significant trait-associated CpGs in the genome than the trait-
neutral ones, EWASplus selects a matching negative training set
with similar genomic context that is ten times larger than the
positive training set.

EWASplus employs an ensemble learning strategy and four
different methods were chosen as the base learner: regularized
logistic regression (RLR), support vector machine (SVM)
classifier, random forest (RF), and gradient boosting decision
trees (GBDT). To identify the best ensemble model, we tested all
possible combinations of these base learners and found that the
combination of RLR and GBDT gives the best performance
overall (Supplementary Tables 1–6), and hence was selected to be
the ensemble model in this study. RLR has the best recall but
relatively low precision, while GBDT has the best precision but
relatively low recall. When these two models are ensembled, the
underfitting property of RLR can effectively offset the overfitting
from GBDT while still keeping enough model complexity. More
detailed description can be found in “Performance evaluation
metrics” in the Methods section.

EWASplus can be applied to any array-based EWAS to extend
its coverage. In this study, we tested EWASplus on data collected
from four different cohorts: ROS/MAP (sample size 717), London
(sample size 113), Mount Sinai (sample size 146), and Arizona
(sample size 302). Cohort characteristics are given in Supple-
mentary Table 7. All original EWASs were performed using the
Illumina 450K methylation array.

EWASplus performance compared to methylation array. To
evaluate the performance of EWASplus, we first considered its
performance on CpGs present on the Illumina 450K methylation
array (henceforth referred to as the “array”). Given the large
sample size (n= 717), we choose data from the ROS/MAP cohort
as the main dataset for performance evaluation. Methylation is
measured on DNA derived from post-mortem PFC. Standard
EWAS were conducted on six different AD-related traits: beta-
amyloid density, Braak staging, the Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD) score, cognitive tra-
jectory, global AD pathology, and neurofibrillary tangle density
(Supplementary Table 8). We trained a separate classifier for each
of the six traits.

EWASplus results are summarized in Table 1 (see section
“Hyperparameter tuning and ensemble model” for detailed
description of the approach of evaluation). The area under the
receiver operator characteristic (ROC) curve (AUC) values from
the six traits range from 0.831 (cognitive trajectory) to 0.962
(neurofibrillary tangles) (Fig. 2a). The area under the precision-
recall curve (PRC) (AUPRC) values from the six traits range from
0.502 (CERAD) to 0.858 (neurofibrillary tangles) (Fig. 2b). These
results indicate that EWASplus works well to predict significant
AD-associated CpGs for methylation measured by the array.
Among the six traits, we observe the best performance for
neurofibrillary tangles.

To further evaluate EWASplus, we asked whether the
EWASplus prediction score is capable of distinguishing CpGs
with differential DNAm between AD case and control status. To
answer this question, we selected four groups of CpGs that differ

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24710-8

2 NATURE COMMUNICATIONS |         (2021) 12:4472 | https://doi.org/10.1038/s41467-021-24710-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


with respect to differential DNAm association with AD: (a) AD-
associated CpGs in the positive training set (i.e., p-value less than
the EWAS threshold); (b) CpGs suggestively associated with AD
(i.e., p-value slightly greater than the EWAS threshold); (c) CpGs

not associated with AD but not in negative training set; and (d)
CpGs not associated with AD and in the negative CpG training
set (i.e., p-value greater than the EWAS threshold and in negative
training set). On average, we find a significant difference for

Fig. 1 Overview of EWASplus approach. The EWASplus procedure is composed of four major steps: (1) Training data collection from existing EWASs; (2)
External feature (from sources such as ENCODE and Roadmap Epigenome consortia) selection; (3) Ensemble learning; and (4) Genome-wide CpGs risk
prediction, in which trained ensemble learning model is applied genome-wide to score all CpGs.

Table 1 Summary of performance evaluation of all six AD-related traits.

Outcome Outcome type AUC AUPR F1 Precision Recall

Beta-amyloid Pathologic, IHC 0.850 0.539 0.492 0.423 0.589
Braak staging Pathologic, Silver Stain 0.860 0.599 0.530 0.487 0.581
CERAD Pathologic, Silver Stain 0.833 0.502 0.508 0.457 0.571
Cognitive trajectory Clinical 0.831 0.591 0.516 0.451 0.604
Global pathology Pathologic, Silver Stain 0.882 0.622 0.577 0.507 0.671
Neurofibrillary tangles Pathologic, IHC 0.962 0.858 0.754 0.677 0.852

The performance evaluation is on independent testing set on 450K array. The result reported here is in imbalanced setting (positive to negative CpGs ratio 1:10), which is closer to the real imbalanced
setting in the human genome.
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EWASplus prediction scores between suggestively positive and
negative CpGs that are not in the training sets (Wilcoxon rank-
sum test; p < 3.64 × 10−16; Supplementary Fig. 2) for all six traits.
Scores for CpGs in group b are similar to those in group a
(positive training set), albeit with higher variation, whereas scores
in group c have almost the same scores as group d (negative
training set). As expected, our results demonstrated excellent
capability of EWASplus in distinguishing CpGs that show AD
association or not.

EWASPlus performance for off-array CpGs. We applied the six
classifiers trained on the six AD traits using EWASplus to the
entire human genome to obtain a prediction score for every CpG
(Fig. 3a). The top ten CpGs with the highest composite scores are
listed in Table 2. The total number of CpGs with a prediction
score is about 78 times the number of CpGs present on the
Illumina 450K methylation array. The prediction scores for all
CpGs are provided at the EWASplus Github site.

For the off-array CpGs, we examined the distribution of
prediction scores for different types of genomic regions. We
hypothesized that top CpGs with the highest prediction scores
would be located in functional regions such as enhancers and
promoters, and we find this to be the case (Fig. 3b). The
normalized proportion for enhancers ranges from 15.73 to
43.19% and exons range from 4.69 to 23.99%, which are both
significantly higher than the expected occurrence of these regions
in the high prediction score percentile intervals (binomial test for
the highest prediction score quantile interval: p < 1.00 × 10−99 for
both enhancers and exons). To better understand the properties
and context of top-ranked CpGs predicted by EWASplus, we
selected the top 10k CpGs with the highest overall EWASplus
prediction scores and analyzed their chromatin states (15-state
model) defined in dorsolateral prefrontal cortex. We calculated
the enrichment (or depletion) of the 15 chromatin states in the
top 10k CpGs. As a result, we found that all six AD-related traits
are enriched for sites annotated as flanking active transcription
start site (TSS) (binomial test; p < 1.00 × 10−99 for all traits),
active TSS (binomial test; p < 1.00 × 10−99 for all traits),
enhancers (binomial test; p < 1.22 × 10−9 for all traits), and
repressed polycomb (binomial test; p < 1.00 × 10−99 for all traits),

and under-represented for sites within quiescent regions
(binomial test; p < 1.00 × 10−99 for all traits) (Fig. 3c). There is
no significant difference in the enrichment patterns across the six
AD traits. These results support the conclusion that top CpGs
associated with AD tend to be located in functional regions.

Comparison with a competing method. In a recent work, using
array-measured methylation levels, Zhang et al.21 develop a
computational algorithm to impute the methylation levels on
CpG sites genome-wide including those not on the Illumina 450K
array. Their approach employed about 125 genomic and epige-
nomic features (the number varies when including different sets
of individual-level features) mainly composed of regulatory marks
from ENCODE project. Although not designed for trait-
association prediction, one could apply this method to impute
methylation levels for every individual sample and on every CpG
site. Subsequently, association test can be conducted on these
imputed methylation measures to identify CpGs significantly
associated with a trait of interest.

To compare such a strategy with EWASplus, we applied Zhang
et al.’s method and used the imputed methylation values to
conduct an association test. We found that the AUC for
EWASplus is between 0.178 and 0.329 higher compared to the
adapted Zhang et al. approach; AUPR for EWASplus is 0.219 to
0.364 higher than adapted Zhang et al. approach across six AD-
related traits (see Supplementary Fig. 3a, b for performance
comparison).

Experimental validation of EWASplus predictions. To experi-
mentally test the validity of the prediction scores reported by
EWASplus, we performed targeted bisulfite sequencing to mea-
sure the methylation level at 559 selected CpGs from 150 ran-
domly selected participants from the Religious Orders Study
(ROS) or Memory and Aging Project (MAP) cohorts who are
representative of both studies and have available brain tissue for
bisulfite sequencing (Supplementary Table 9). CpGs were selected
for independent validation from the top EWASplus predicted
sites using a stepwise selection process that prioritized regions
with the highest predicted scores that were physically separated
by at least 500 bp. For comparison purposes, we also randomly

Fig. 2 Summary EWASplus results. a ROC curves of the predictive performance of EWASplus on the six traits in the ROS/MAP cohort. b Precision-recall
curves of the predictive performance of EWASplus on the six traits in the ROS/MAP cohort. Source data are provided as a Source data file.
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selected CpGs from regions with predicted scores in the lower
half but similar physical characteristics (e.g., GC content). In
addition, we targeted CpGs on the array that could serve as
positive controls. After quality control, 319 CpGs were analyzed
including 31 CpGs on the 450K array identified as AD-
associated22, 260 off-array CpGs predicted to be AD-associated
based on EWASplus, and 28 off-array CpGs predicted to not be
AD-associated. These 319 CpGs can be grouped into 58 inde-
pendent clusters (referred to as CpG cluster hereafter) on the
genome that belongs to three groups: 38 off-array predicted AD-
associated, 10 on-array AD-associated22, and 10 off-array pre-
dicted not AD-associated. For performance comparison, we
combined test results from the six individual traits. Due to the
limited sample size, we call a CpG cluster AD-associated if at least
one of the CpGs at the locus achieves unadjusted p-value for

differential DNAm <0.05 for any of the six traits. Similar to our
results from individual traits, we found that positive CpG clusters
predicted by EWASplus have the highest rate of association with
at least one AD trait (65.8%, or 25 of 38), followed by CpG
clusters identified by array-based EWAS (60.0%, or 6 of 10). In
contrast, the negative control CpG clusters predicted by EWAS-
plus have the lowest (30.0%, 3 of 10) (Table 3). Thus, CpGs with
top EWASplus scores are about 2.2 times more likely to be
associated with an AD trait (Binomial test, p < 1:00 ´ 10�9).

EWASplus performance on multiple cohorts. To further test
EWASplus, we examined its performance using data from three
additional cohorts: London cohort17 (prefrontal cortex, N= 113),
Mount Sinai cohort23 (prefrontal cortex, N= 146), and Arizona

Fig. 3 Genome-wide prediction results. a Manhattan plots for neurofibrillary tangles: the top panel is for on-450K CpGs with EWAS p-values and the
bottom panel is for whole-genome CpGs with imputed LRS by EWASplus. The y-axis is the log-scale rank scores. The top-ranked CpG has the LRS of 7.42
(about empirical p-value of 3.8 × 10−8); the top 100th ranked CpG has the LRS of 5.42 (about empirical p-value of 3.8 × 10−6) and the top 10,000th ranked
CpG (about empirical p-value of 3.8 × 10−4) has the LRS of 3.42. b Raw and normalized stacked-proportion histograms for different genomic annotation
types. Source data are provided as a Source data file. c The difference of observed and expected chromatin states proportion for the top 10,000 loci across
the six AD-related traits: Beta-amyloid, Braak staging, CERAD, cognitive trajectory, global pathology, and neurofibrillary tangles. Source data are provided
as a Source data file. The annotated chromatin states are from Roadmap Epigenetics Project and we used the core 15-state model chromatin states for the
dorsolateral prefrontal cortex tissue type. To minimize ambiguity, we require only a single annotation type is assigned for each CpG site. if a CpG has
multiple annotations, we only record the most “significant” annotation with the following order: enhancer > promoter > exon > intron > near gene (1–5 kb to
the TSS) > intergenic. We do not list 5′ UTR and 3′ UTR since these two types are within the first and last exon of each gene according to the UCSC
annotation system.
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cohort24 (middle temporal gyrus, N= 302). In all three studies,
Braak staging (treated as a continuous variable) is used as the trait
in the EWAS studies, as described in Smith et al.25. Detailed
information about these cohorts is summarized in Supplementary
Table 7.

We found that EWASplus performed well in all three datasets.
The AUC values range from 0.697 (London 1) to 0.863 (Mount
Sinai) (Supplementary Fig. 4a). The AUPRC values range from
0.233 (Arizona) to 0.604 (Mount Sinai) (Supplementary Fig. 4b).
The complete results including all evaluation metrics can be
found in Table 4.

To understand the most relevant factors influencing EWASplus
performance among the different datasets, we treated the
performance measurement testing AUC as the response variable
and tested numerous independent variables using the linear
regression model. We found that when choosing the positive
EWAS threshold (negative logarithm transformed p-values) as
the independent variable, simple linear regression achieved R2 of
0.588 using other performance measures such as AUPRC and F1
values produced similar results (Supplementary Fig. 5). These
results suggest that perhaps the most relevant factor that
influences EWASplus performance is the quality and power of
the original EWAS, which depends on the effect and sample sizes.

Biological insights into AD. To glean biological insights from
the EWASplus results, we examined genes surrounding some of
the highest EWASplus scoring CpGs. Interestingly, we found that
the highest scoring CpG is located inside the HOXA gene cluster,
which has been identified by three independent array-based
EWASs of cortical brain tissue associated with Braak staging, a
measure of neurofibrillary tangles17,23,26. In contrast to prior
analyses that identified individual HOX genes, EWASplus results
identify a 40 kb region on chromosome 7 that includes multiple
homeobox genes, e.g., HOXA2, HOXA3, HOXA4, HOXA5, and
HOXA6, that are associated with AD (Fig. 4c).

In addition, of the top 10 detached EWASplus scoring CpGs,
seven were not previously implicated in any EWAS of AD. Here
detached means any two CpGs on this list are at least 10 kb away
from each other. Gene set enrichment analysis by GeNets27 using
all genes located within 5 kb of the top 100 EWASplus scoring
CpGs (123 genes, Supplementary Data 1) revealed a significant
enrichment of protein kinases (p ¼ 0:044, Supplementary Fig. 6)
—ALPK3, DMPK, MAP3K11, MAP4K1, and TAOK328. Identifi-
cation of kinases within AD is of particular interest given that
neurofibrillary tangles, a hallmark neuropathology of AD, result
from hyperphosphorylation of microtubule-associated protein tau
(MAPT)29. In addition, we found that genes within the top
EWASplus regions have evidence of physical interaction with
known AD genes or AD GWAS loci (Supplementary Fig. 6) (e.g.,
PRKAG2 and TNS3 interact with APOE, CLU, APP, PSEN1/2, and
RIN2 and RIN3 interact with BIN1). These analyses support the
idea that EWASplus is able to identify interesting underlying
biological relationships in AD.

Discussion
EWAS has been shown to be a powerful and effective approach to
derive associations between methylation changes and phenotypes.
EWAS studies of human brain have elucidated additional genes
involved in AD16–19. To expand our understanding of potential
AD-relevant regions in the genome, we developed EWASplus to
explore the 97% of CpGs that are not included on the methylation
arrays. EWASplus uses an ensemble learning-based computa-
tional pipeline to learn relevant features from a large set of
potential omics features.T
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Table 3 Comparison of number and proportion of differentially methylated CpGs in various categories of CpGs.

# of positives in EWASplus predicted
positives (%) total= 38

# of positive in on-array positives
(%) total= 10

# of positives in EWASplus predicted
negatives (%) total= 10

Any trait 25 (65.8) 6 (60.0) 3 (10.0)
Beta-amyloid 17 (44.7) 1 (10.0) 2 (20.0)
Braak staging 11 (28.9) 2 (20.0) 1 (10.0)
CERAD 17 (44.7) 2 (20.0) 3 (30.0)
Cognitive trajectory 7 (18.4) 3 (30.0) 0 (0.0)
Global pathology 13 (34.2) 2 (20.0) 3 (30.0)
Neurofibrillary tangles 16 (42.1) 5 (50.0) 1 (10.0)

Methylation level is measured by targeted bisulfite sequencing experiment.

Table 4 Summary of performance evaluation on three additional cohorts of samples: London, Mount Sinai, and Arizona.

Cohort Brain tissue AUC AUPR F1 Precision Recall

London Prefrontal cortex 0.697 0.272 0.325 0.248 0.471
Mount Sinai Prefrontal cortex 0.863 0.604 0.481 0.364 0.708
Arizona Middle temporal gyrus 0.699 0.233 0.275 0.196 0.461

Fig. 4 Manhattan plot of neurofibrillary tangles EWAS at the HoxA locus on chromosome 7. a Array-based EWAS p-values. The most significant CpG
identified by De Jager et al. are shown with an arrow. b EWASplus predicted LRS. c The landscape of the HoxA cluster genes.
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EWASplus is a powerful machine learning method based on
disease-specific EWAS results and has some parallels with gen-
otyping imputation strategy used in genetics studies30. The fun-
damental difference is that genomic imputation relies on linkage
disequilibrium31, but DNAm does not share the same degree of
physical correlation21. In fact, the correlation of methylation
levels between two adjacent CpGs decays rapidly with
distance32,33. Thus, EWASplus takes an alternative approach by
inferring whether a CpG is trait-associated. This is achieved
under a supervised classification framework.

EWASplus can effectively identify AD-associated differentially
methylated CpGs according to multiple experiments conducted
to evaluate its performance. First, using only CpGs on the
methylation array, in silico cross-validation revealed high AUC
and AUPRC for all six traits. Second, we observed good separa-
tion of EWASplus prediction scores between near positive CpGs
versus negative CpGs not in the training set (Supplementary
Fig. 2; Wilcoxon rank-sum test p-value ranges from 2:82´ 10�99

to 3:64 ´ 10�16) in EWASplus prediction scores. For sites not
assayed by the methylation array, we found significant enrich-
ment of high-scoring CpGs in genomic regions of functional
annotations such as TSS regions and enhancers. Finally, and most
importantly, we performed experimental validation using targeted
bisulfite sequencing on CpGs not included on the methylation
arrays.

Our EWASplus results are notable, in general, for two reasons.
First, high-scoring EWASplus CpGs are more likely to be located
in regions with functional annotations such as enhancers or
promoters. Both of these results are consistent with other work
showing that gene regulation is a key facet of many diseases34,35.
Second, EWASplus results illustrate how epigenetic “fine map-
ping” may illuminate disease pathophysiology. For example, in
the HOXA locus EWASplus results suggest that epigenetic
changes are occurring across the gene cluster in AD rather than
one gene-family member.

A key idea of EWASplus is that it bypasses inferring the
individual-level DNAm level directly. A similar approach has
been used to predict additional trait-associated genetic variants
using GWAS and machine learning36. Since our goal is to identify
disease-associated DNAm CpGs rather than methylation status
directly our approach avoids much complexity associated with
accounting for the many factors that can influence DNAm CpG
status (e.g., age, cell type proportion). This is illustrated by the
performance of EWASplus compared to the modification of
Zhang et al.’s method to address disease-association, which it was
not originally designed to do, admittedly.

EWASplus results for AD reveal several interesting biological
insights. First, we identified a 40 kb region in the homeobox A
cluster of genes that are associated with AD, which expands upon
the previously described association with individual genes within
that cluster (e.g., HOXA3) and AD. Since these are known tran-
scription factors, these findings may suggest important tran-
scriptional regulation occurs in AD or its progression. Second, we
find enrichment of kinases—ALPK3, DMPK, MAP3K11,
MAP4K1, and TAOK3—in the top EWASplus loci. This finding is
particularly relevant for AD given that the pathologic hyper-
phosphorylation of tau is a hallmark neuropathologic feature of
AD (i.e., neurofibrillary tangles). Of these kinases, only ALPK3
and MAP4K1 were previously suggested to associate with
AD23,37–39. DMPK is notable for causing myotonic dystrophy
type 1 due to a repeat expansion within an intronic region in
carriers that leads to altered gene expression of genes within that
region40. Interestingly, differential DNAm of MAP4K1 has been
associated with AD in human hippocampus39 and Braak staging
(a measure of neurofibrillary tangle pathology)23 in independent

human brain datasets. TAOKs (thousand and one amino acid
kinases, also referred to as prostate-derived STE20-like kinases
[PSKs]) have been extensively investigated for their ability to
phosphorylate MAPT and regulate microtubule assembly41; yet,
to our knowledge, methylation of TAOK3 has not been pre-
viously associated with AD. Finally, from the top 10 EWASplus
results (Table 2) we found four genes that have intriguing con-
nections with AD or cognitive decline from approaches other
than methylation. These genes include DUSP1, PPARD, JUN, and
PRKAG2. For example, a PPARD null mouse model shows cog-
nitive impairment42, and PPARD is highly expressed in the
brain43 and implicated in type 2 diabetes and obesity44, which are
risk factors for AD. In addition, there is experimental evidence to
suggest that JUN and PRKAG2 regulate or interact with APP45,46,
which is of interest in AD given APP is cleaved to beta-amyloid.
Thus, these findings from the literature provide complementary
support that EWASplus identifies disease-relevant findings and is
likely to provide fresh insight into AD.

DNA methylation is tissue-specific. Most of the tests done in
this study are conducted on the PFC region of the brain. We
focused on PFC for several reasons. First, epigenetic marks are
correlated across neocortical regions47. Second, cell loss in PFC is
relatively less even in people with high neuropathological burden
from AD compared to other cortical regions. Third, the majority
of available reference human brain transcriptomes and proteomes
are from the PFC allowing future work to test predictions of
EWASplus using existing data. Despite focusing on PFC,
EWASplus performs well on the middle temporal gyrus. Thus, we
expect EWASplus to perform well for other tissues because the
genome-wide features used are from many different tissue types.
From all the tests we performed, we found that the number and
level of significant CpGs seem to have a strong impact on the
EWASplus performance. Therefore, we are confident that
EWASplus will be able to successfully extend the coverage of high
quality, well-powered array-based EWAS studies.

Although the EWASplus methodology is general and can be
applied to any tissue type, the methylation profiles are tissue-
specific, may change with age/environment and demographics.
This implies that the trained EWASplus model is only valid for
the specific tissue type collected from samples with certain age/
environmental profile and demographics. One should exercise
caution when trying to extrapolate the results to other tissue types
such as blood, or subjects with different age or environmental and
demographic profiles. Since the major utility of EWASplus is to
expand the coverage of EWAS beyond the array within a specific
experimental dataset, this limitation will not hamper the utility of
EWASplus.

A potential limitation of EWASplus is the limited number of
underlying training datasets and the focus on subjects of recent
European descent. Thus, it is of particular importance to expand
the number and diversity of additional EWAS data in future
work. The underlying methylation data were also from PFC,
which is affected relatively late in AD; however, the findings may
not generalize to other neocortical regions. Thus, training data
from additional relevant brain regions would improve EWASplus
models. Likewise, while we started with a large number of
potential features, many were from non-neuronal sources, which
may limit generalizability to brain tissue. However, as those data
are generated, our approach can be easily retrained with those
data for improved specificity for brain-cell types from different
regions. A strength of this work is that the underlying methyla-
tion data were derived from participants enrolled in a population-
based study of aging, and there is a wide range of neuropathology
findings that reflects the general population rather than a clinic-
based ascertainment48. We also show a high degree of
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experimental validation and note that future work could employ
targeted bisulfite sequencing49 or a custom array platform50 to
profile candidate CpGs in a cost-effective and high-throughput
manner.

EWASplus does not provide a significant cut-off threshold
since it is a supervised classification approach, not a testing-based
method. In practice, one can select the threshold empirically by
checking whether top CpGs identified by array-based EWAS
made the cutoff. Deciding on the number of significant EWAS
CpGs to include in training is a tradeoff between the quantity and
quality of the training set in EWASplus. Thus, the significance
threshold for each EWAS should be decided based on the effect
size and sample size of the EWAS. Future work should examine
the utility of including different thresholds and use cross-
validation to select the desired significance cutoff. For a CpG,
no matter how highly ranked by EWASplus, should only be
considered as “putative” in terms of trait association unless it can
be validated using experimental approaches.

In conclusion, we present EWASplus, a powerful machine
learning approach to identify disease-associated CpGs with high
reliability. Application of EWASplus to AD highlights important
regions and genes that likely contribute to AD pathogenesis,
which a valuable addition to the investigation of the epigenetic
landscape of AD. In addition, EWASplus is a general approach
that may be applied to extend any existing EWAS results obtained
using array-based technology, regardless of the trait or pheno-
types being studied. We anticipate more exciting findings from its
future applications.

Methods
Cohorts. The main dataset used in this study comes from the ROS/MAP cohorts.
ROS and MAP are longitudinal cohort studies of aging and AD led by investigators
at the Rush Alzheimer’s Disease Center51,52. Participants give written informed
consent for annual assessments, signed an Anatomic Gift Act, and a repository
consent to allow their data and biospecimens to be repurposed. Each year, parti-
cipants undergo a detailed medical, neurological, and neuropsychiatric assessment.
After death, each participant undergoes a detailed brain autopsy with neuro-
pathologic examination. Both ROS and MAP were approved by the Institutional
Review Board of Rush University Medical Center. They share a large common core
of data at the item level to allow efficient merging of datasets. ROS/MAP resources
can be requested at https://www.radc.rush.edu.

In addition, we also obtained data from three separate cohorts: London, Mount
Sinai, and Arizona. The “London” cohort refers to prefrontal cortex tissue obtained
from 113 individuals archived in the MRC London Neurodegenerative Disease
Brain Bank. The details of the cohort are described in Lunnon et al.17. The “Mount
Sinai” cohort refers to prefrontal cortex tissue obtained from 146 individuals
archived in the Mount Sinai Alzheimer’s Disease and Schizophrenia Brain Bank.
Details of this cohort is described in Smith and colleagues25. The “Arizona” cohort
refers to 302 middle temporal gyrus samples from The Sun Health Research
Institute Brain Donation Program24. The details of this cohort are described in
Brokaw et al.53.

Sample preparation and differential DNAm CpGs identification. DNAm data
were generated from dorsolateral PFC (Broadman area 46) of post-mortem sam-
ples obtained from individuals in the ROS/MAP cohorts.

DNAm profiling was performed with the Illumina HumanMethylation450
Beadchip array16. After excluding non-Caucasian subjects, 717 ROS/MAP
participants with array DNAm data remained for analysis. We obtained raw IDAT
files from the Synapse website (Synapse ID: syn7357283) and removed probes
annotated to multiple chromosomes or the X and Y chromosomes by Illumina,
probes that cross-hybridize with other probes due to sequence similarity (identified
by Chen et al.54), probes with a detection p-value > 0.01 in any sample, probes
without a CpG, and probes that overlap with a common SNP (identified by Barfield
et al.55). After this filtering, a total of 334,465 autosomal CpGs remained for
analysis.

For the EWAS analyses, each probe was normalized using the BMIQ algorithm
from the Watermelon R package56, and adjusted for batch effects using the ComBat
function from the sva R package57. We used the CpGassoc58 R package to test if the
methylation level of each array CpG is associated with the trait of interest via
regression methods58. All models were adjusted for proportion of neurons, age at
death, sex, post-mortem interval, plate, study, and years of education. Neurons
were added as a covariate to avoid potential confounding due to differences in the

cellular composition of the tissue samples. The proportion of neurons in each
sample was estimated using the CETS R package and reference methylation data
from isolated neuronal nuclei59.

We performed EWASs for the following six AD-related traits: (1) beta-amyloid
load which is the percent area of beta-amyloid based on image analysis; (2)
neurofibrillary tangle density by stereology; (3) CERAD score; (4) Braak stage; (5)
global AD pathology burden; (6) cognitive trajectory based on the average z-score
of 17 cognitive function tests. Beta-amyloid and neurofibrillary tangle were
measured in the cortex using immunohistochemistry with antibodies specific to
beta-amyloid and phosphorylated-tau, as described52. We used square-root-
transformed values for both traits to improve their normality. CERAD score and
Braak stage are semi-quantitative measures that reflect both a neuropathologist’s
opinion of AD diagnosis and the distribution and amount of silver-stain-identified
neuritic and diffuse plaque and neurofibrillary tangle pathologies, respectively60–62.
CERAD scores can take on values from one to four indicating definite AD,
probable AD, possible AD, and no AD, respectively. CERAD was treated as a
continuous trait. Braak stages can take on values from one to six, indicating the
increasing spread of neurofibrillary tangle pathology in the brain, and Braak was
coded as a binary trait with stages one to three as controls and stages four to six as
affected. Global AD pathology burden is a summary measure of silver-stain-
identified neuritic plaque, diffuse plaque, and neurofibrillary tangle pathologies52.
As global AD pathology burden has a skewed distribution, we used square-root-
transformed values. Cognitive trajectory, or the rate of change in cognition over
time, was estimated for each ROS/MAP participant using a linear mixed model22.
For each person, cognitive trajectory was estimated as the person-specific random
slope of a linear mixed model that included global cognitive function as the
longitudinal outcome63, follow-up year as the independent variable, and sex, age at
enrollment, and years of education as covariates.

For the London, Mount Sinai, and Arizona cohorts, we directly used the
processed EWAS results reported in Smith et al.25. Details of the sample
preparation and differential DNAm CpGs identification have been described in
previous studies17,24,53.

Training sets selection. For each trait, positive CpGs in the training set were
selected based on association test p-values (threshold ranges from 1:00 ´ 10�7 to
1:00 ´ 10�5). For each positive CpG, ten matching negative CpGs were selected
from the Illumina 450K array such that they have similar β-values as the positive
CpG, but none is considered significant in any of the EWASs conducted on the six
traits. We used a conservative threshold (p > 0:40) for being not-significant, and
β-values were calculated as the mean values of methylation intensity over 717 ROS/
MAP samples for each CpG on the Illumina 450K array.

Base classifiers. We used four different methods as base classifiers with varying
model complexity. The goal of this approach was to select the model with the least
error to achieve an optimal overall performance. We used four models that
included: (1) RLR with L2-penalty, which alleviates overfitting and feature colli-
nearity; (2) SVM classifier64, which performs well with linearly non-separable
classification, a common feature for real-world problems; (3) RF65, which is a
bagging method with decision tree as base learner; (4) GBDT66, which differs from
RF in that a new tree is added to model to gradually optimize the objective function
that was set as log loss. EWASplus uses an accurate and efficient implementation of
GBDT from package XGBoost67.

Feature selection. We assembled a comprehensive collection of 2256 genomic/
epigenomic profiles as well as multiple functional annotation scores as features to
be used in the model. Omics profiles include TF and histone ChIP-seq, open
chromatin, total RNA-seq, and WGBS. Functional annotation scores include
CADD68, GenoCanyon69, and Eigen/EigenPC70. More details can be found in
Supplementary Table 10.

The moderate size of the training sets (between 1706 and 3181) may result in
overfitting if all features are included in the training. Thus, we used a dimension
reduction/feature selection step before the model training. For each trait, we
performed feature selection for each of the four base classifiers: RLR, SVM, RF, and
GBDT, respectively. For each base classifier, we selected the top 100 most
informative features using the training data. In RLR and SVM, features were
ranked based on the weights of the fitted model. For RF, features were ranked based
on the Gini impurity measure. For GBDT, features were ranked by the gain metric
when fitting the model, or, in other words, the improvement in accuracy brought
by a feature to the branches it is on.

Next, we ranked the features by the number of times that this feature was
selected by the four base learners as informative. We selected the top 60 features
(testing on the number of top features ranges 30–100, 60 was selected because it
gave the best performance overall). Features were ranked by the number of
methods that select the feature as informative. To break a tie, we introduced a
secondary sorting method. For each feature, we conducted the Wilcoxon rank-sum
test comparing feature values between positive and negative CpGs, and features
were ranked from the most significant to the least significant. The top 60 features
for all six traits from the ROS/MAP cohort and Braak staging from three additional

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24710-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4472 | https://doi.org/10.1038/s41467-021-24710-8 | www.nature.com/naturecommunications 9

https://www.radc.rush.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


cohorts are shown in Supplementary Data 2–10. These features may be informative
about underlying disease mechanisms.

Hyperparameter tuning and ensemble model. We used the Tree-of-Parzan
Estimators (TPE) implemented in Hyperopt71 to adaptively search the hyper-
parameter space of each component model (base learner) for the best hyperpara-
meter settings. This model-based hyperparameter tuning method is thought to
achieve better performance than random search in terms of both accuracy and
efficiency71.

The hyperparameter tuning for each component model is conducted separately.
In the training dataset, we uniformly up-sample the positive CpGs to match the
number of negative CpGs to alleviate the imbalance problem. In the outer CV, the
whole dataset of positive and negative CpGs were split into training and testing sets
in a nine-to-one ratio in each round. Within each round, the ninefolds were further
split into threefold to conduct the inner 3-fold CV for hyperparameter searching.
The best set of hyperparameters was decided by the highest F1 score and it was
then used for the remaining onefold in the outer 10-fold CV. Each one of the
tenfolds in the outer CV layer is used once as the testing set in a round-robin way
so that out-sample predictions cover the whole dataset. We evaluate our model
with the out-of-bag estimates for testing error and report the evaluation results in
Table 1 for the ROS/MAP cohort and Table 4 for other additional cohorts.

After the outer 10-fold CV, we then built the ensemble model by selecting the
best combination of component models. The out-sample predictions of each base
learner from the outer 10-fold CV were aggregated in a soft-voting manner to give
the ensemble prediction probabilities in different combinations of component
models. Due to the problem of class imbalance, we evaluated the performance of
the ensemble models using AUC, AUPR, precision, recall, and F1 score.

Performance evaluation metrics. To assess the performance of EWASplus, we
used three classes of evaluation metrics: precision and accuracy, AUC and AUPRC,
as well as F1 score. Precision measures the true positive rate of a classifier. Accuracy
measures the percentage that a classifier correctly labels test samples. For imbal-
anced datasets where positive samples are of more interest, precision is preferred
over accuracy. PRC is preferred over ROC. The F1 score is another widely used
performance measure for imbalanced datasets. It takes into consideration both
accuracy and precision by assigning each an equal weight in the following calcu-

lation formula: F1 ¼ 2 ´ recall*precision
recallþprecision

� �
. The focus of F1 score is on the positive

samples which is usually under-represented.

Binomial test for enrichment of protein kinases. We selected the top 100 CpGs
with the highest EWASplus prediction scores across six AD-related traits in a
stepwise forward manner such that any two CpGs in the top 100 list are at least 10
kb away from each other. Next, we searched through the 5 kb neighborhood of
these 100 CpGs to retrieve all genes that overlapped, for a total of 123 genes.
Among these genes, five are known protein kinases. Given a complete list of human
kinases (492 from the autosomes) from Kinase.com (http://kinase.com/human/
kinome/)28 and a complete list of human genes (31,684 from the autosomes) from
Ensembl (http://grch37.ensembl.org), we conducted an enrichment test using
binomial distribution which returned an enrichment p-value of 0.044.

Log-scale rank score (LRS) for prioritizing AD-associated loci. In order to
better present the whole-genome prediction result, we sorted the prediction scores
of each trait and calculated the log-scale rank score (LRS) for each CpG
(LRS ¼ �log10

rank
total numCpGs; total numCpGs ¼ 26; 573; 858). The LRS is similar to a

log-transformed empirical p-value. A higher LRS means the CpG is more likely to
be associated with the trait.

Loci selection for targeted bisulfite sequencing. Targeted bisulfite sequencing
was conducted on selected CpGs (with neighboring CpGs profiled unintentionally,
as well) for 150 randomly selected samples from the ROS/MAP cohort. Since most
features used in model training having only one value in every 200 bp bin, CpGs
within a 200 bp bin tend to have similar prediction scores. In order to select a more
representative (less clustered) set of loci for experimental validation, we required
any pair of selected CpGs must be at least 500 bp apart. The forward selection
process is performed in the stepwise manner, starting from the CpG with the
highest total LRS score. Due to the limitation of sequencing primer design, not all
loci on the candidate list were selected for bisulfite sequencing. The selection
process was stopped when a pre-determined sequencing capacity is reached. For
comparison, we selected 38 off-array CpG clusters with high prediction scores, 10
clusters of on-array CpGs listed in de Jager et al.16 and 10 clusters of off-target
negative control CpGs.

Adaptation of Zhang et al. for comparison with EWASplus. For the purpose of
fair comparison, we selected 1000 CpGs that are not from the training set used by
EWASplus. Instead, we selected 500 “near positive” CpGs with p-values just above

the threshold and 500 negative CpGs with p-values > 0.40 but not in the negative
training set used by EWASplus. Comparison is performed in two steps: (1) predict
methylation levels for the 1000 CpGs across the 717 samples used to train
EWASplus following instruction in Zhang et al., and (2) perform association test
with R package CpGassoc58 to test for differential methylated based on the pre-
dicted methylation level from the first step.

Targeted bisulfite sequencing. Multiplex primers were designed to amplify the
identified regions using MPD software72 (primers list can be found in Supple-
mentary Data 11). The 200–500 ng purified genomic DNA was used for bisulfite
conversion (EpiTect Bisulfite Kit (Qiagen)). The treated DNA were used for PCR
amplification and PCR amplicons were further purified and pooled together in
equal molar. Mixed amplicons were then purified for libraries preparation and deep
sequencing (100× or above) using a MiSeq following standard procedures
recommended by Illumina. Image analysis and base calling were performed using
standard Illumina pipelines. Quality control was performed in the same fashion for
the array-based genotyping, except the missingness threshold was raised to 50%.

Association testing was performed using the same approach as the array-based
methylation with CpGassoc58 with modifications. The methylation levels were
modeled as logit transformation of β values (log(β/1− β)) to stabilize the
variance73. Next, we grouped adjacent CpGs into clusters and conducted the test
for differential DNAm. Due to the limited sample size of the study, we call a CpG
cluster differential DNAm if the lowest p-value from the Differential DNAm test is
less than an unadjusted p-value 0.05 among all CpGs in the CpG cluster. We
adjusted for the following covariates: age of death, sex, years of formal education,
post-mortem interval, study, and cell type proportion, which was estimated using
the CETS R package59.

Protein–protein interaction and pathway analyses. To identify potential cross-
talk among known AD genes and genes suggested by EWASplus, we used web
platform GeNets27 (https://apps.broadinstitute.org/genets) to query a combined list
of 28 known AD-associated genes and 123 genes near the top 100 detached CpGs
ranked by EWASplus prediction scores (Supplementary Data 1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
EWASplus annotated genome-wide risk scores for six AD-related traits, the processed features
used for EWASplus training, the list of gene names residing in the flanking regions of the top
predicted CpG loci, and the result of protein–protein interaction and pathway analyses are
available at https://figshare.com/collections/Dataset_collection_of_EWASplus/5430207
(https://doi.org/10.6084/m9.figshare.c.5430207). The data that support the findings of this
study (The processed EWAS data from the London, Mount Sinai, and Arizona cohorts) are
made available to us from the authors of Smith et al.25, but restrictions apply to the availability
of these data, which were used under agreement for the current study, and so are not publicly
available. Targeted bisulfite sequencing data and ROS/MAP EWAS summary statistics of all
traits are available through Synapse (https://www.synapse.org/#!Synapse:syn25832093). Source
data are provided with this paper.

Code availability
The EWASplus software implements feature selection, ensemble model training, and
annotation of risk-prediction scores. The source code is available via Github at https://github.
com/xsun28/EWASplus/tree/remastered (https://doi.org/10.5281/zenodo.4770198).
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