Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Quality concerns caused by quality control — deformation of silicon strip detector modules in thermal cycling tests

Abstract

The ATLAS experiment at the Large Hadron Collider (LHC) is currently preparing to replace its present Inner Detector (ID) with the upgraded, all-silicon Inner Tracker (ITk) for its High-Luminosity upgrade (HL-LHC). The ITk will consist of a central pixel tracker and the outer strip tracker, consisting of about 19,000 strip detector modules. Each strip module is assembled from up to two sensors, and up to five flexes (depending on its geometry) in a series of gluing, wirebonding and quality control steps. During detector operation, modules will be cooled down to temperatures of about -35 ∘C (corresponding to the temperature of the support structures on which they will be mounted) after being initially assembled and stored at room temperature. In order to ensure compatibility with the detector's operating temperature range, modules are subjected to thermal cycling as part of their quality control process. Ten cycles between -35 ∘C and +40 ∘C are performed for each module, with full electrical characterisation tests at each high and low temperature point. As part of an investigation into the stress experienced by modules during cooling, it was observed that modules generally showed a change in module shape before and after thermal cycling. This paper presents a summary of the discovery and understanding of the observed changes, connecting them with excess module stress, as well as the resulting modifications to the module thermal cycling procedure.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View