Reinforcement learning in signaling game
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Reinforcement learning in signaling game

Abstract

We consider a signaling game originally introduced by Skyrms, which models how two interacting players learn to signal each other and thus create a common language. The first rigorous analysis was done by Argiento, Pemantle, Skyrms and Volkov (2009) with 2 states, 2 signals and 2 acts. We study the case of M_1 states, M_2 signals and M_1 acts for general M_1, M_2. We prove that the expected payoff increases in average and thus converges a.s., and that a limit bipartite graph emerges, such that no signal-state correspondence is associated to both a synonym and an informational bottleneck. Finally, we show that any graph correspondence with the above property is a limit configuration with positive probability.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View