Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Towards Sustainable Aquafeeds: Microalgal (Nannochloropsis sp. QH25) Co-Product Biomass Can Fully Replace Fishmeal in the Feeds for Rainbow Trout (Oncorhynchus mykiss).

Abstract

Aquaculture, one of the worlds most rapidly growing food sectors, faces several concerns about its sustainability. A major concern is using fishmeal and fish oil from ocean-derived small pelagic fish (sardine, anchovy, etc.) in aquaculture feed. The aquafeed industry is seeking new sustainable ingredients to replace fish meal. This study focused on microalgal co-product, Nannochloropsis sp. QH25 co-product (leftover after oil extraction for nutraceuticals) is a novel aquafeed ingredient that can replace fishmeal in rainbow trout diets. A nutritional feeding experiment was conducted and compared fishmeal-containing rainbow trout diets with microalgal co-products that replaced fishmeal as follows: 0% replacement in reference diet (fishmeal, no microalgal co-product) and test diets with 33%, 66%, and 100% replacement of fishmeal using microalgal-product. Results showed the complete replacement diet yielded fish growth, feed conversion, and survival similar to the reference diet. Depositions of macronutrients, amino acids, fatty acids, macro minerals, and several trace elements in the filet were not significantly different across diets. Economic conversion ratio (ECR) analysis showed that the rainbow trout fed the 100% replacement diet had the lowest feed cost per kg of fish produced. Microalgal co-products can fully replace fishmeal in trout feed while maintaining fish performance, flesh composition, and cost-effectiveness.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View