Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Hydrohalite Salt-albedo Feedback Could Cool M-dwarf Planets

Abstract

A possible surface type that may form in the environments of M-dwarf planets is sodium chloride dihydrate, or "hydrohalite" (NaCl • 2H2O), which can precipitate in bare sea ice at low temperatures. Unlike salt-free water ice, hydrohalite is highly reflective in the near-infrared, where M-dwarf stars emit strongly, making the effect of the interaction between hydrohalite and the M-dwarf spectral energy distribution necessary to quantify. We carried out the first exploration of the climatic effect of hydrohalite-induced salt-albedo feedback on extrasolar planets, using a three-dimensional global climate model. Under fixed CO2 conditions, rapidly rotating habitable-zone M-dwarf planets receiving 65% or less of the modern solar constant from their host stars exhibit cooler temperatures when an albedo parameterization for hydrohalite is included in climate simulations, compared to simulations without such a parameterization. Differences in global mean surface temperature with and without this parameterization increase as the instellation is lowered, which may increase CO2 build-up requirements for habitable conditions on planets with active carbon cycles. Synchronously rotating habitable-zone M-dwarf planets appear susceptible to salt-albedo feedback at higher levels of instellation (90% or less of the modern solar constant) than planets with Earth-like rotation periods, due to their cooler minimum dayside temperatures. These instellation levels where hydrohalite seems most relevant correspond to several recently discovered potentially habitable M-dwarf planets, including Proxima Centauri b, TRAPPIST-1e, and LHS 1140b, making an albedo parameterization for hydrohalite of immediate importance in future climate simulations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View