Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Circulating LOXL2 Levels Reflect Severity of Intestinal Fibrosis and GALT CD4+ T Lymphocyte Depletion in Treated HIV Infection

Abstract

Background

Incomplete immune reconstitution may occur despite successful antiretroviral therapy (ART). Gut-associated lymphoid tissue (GALT) fibrosis may contribute via local CD4+ T lymphocyte depletion, intestinal barrier disruption, microbial translocation, and immune activation.

Methods

In a cross-sectional analysis, we measured circulating fibrosis biomarker levels on cryopreserved plasma from adult HIV-infected (HIV+) SCOPE study participants on suppressive ART who also had fibrosis quantification on recto-sigmoid biopsies. Relationships among biomarker levels, clinical and demographic variables, GALT lymphoid aggregate (LA) collagen deposition, and LA CD4+ T lymphocyte density were analyzed using simple regression. Biomarker levels were also compared to levels in HIV+ viremic SCOPE participants and a convenience sample of HIV-uninfected (HIV-) samples.

Results

HIV+ aviremic participants (n = 39) were 92% male and 41% non-white, with median age 48 years, CD4+ T lymphocyte count 277 cells/mm3, and 17 years since HIV diagnosis. Most biomarkers were lower in HIV- (n = 36) vs HIV+ aviremic individuals, although CXCL4 levels were higher. HIV+ viremic individuals (N = 18) had higher median TGF-β3, CIC-C1Q, and TIMP-1 (P < 0.05) and lower LOXL2 levels (P = 0.08) than HIV+ aviremic individuals. Only higher LOXL2 levels correlated with more GALT collagen deposition (R = 0.44, P= 0.008) and lower LA CD4+ T lymphocyte density (R = -0.32, P = 0.05) among aviremic individuals.

Conclusions

Circulating LOXL2 levels may be a noninvasive measure of intestinal fibrosis and GALT CD4+ T lymphocyte depletion in treated HIV infection. LOXL2 crosslinks elastin and collagen, and elevated LOXL2 levels occur in pathologic states, making LOXL2 inhibition a potential interventional target for intestinal fibrosis and its sequelae.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View