- Main
A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties.
Abstract
Although 6-lauroyl-2-(N,N-dimethylamino)naphthalene (LAURDAN) is now widely used as a probe for lipid systems, most studies focus on the effect of the lipid environment on its emission properties but not on the excitation properties. The present study is intended to investigate the excitation properties of LAURDAN in diverse lipid environments. To this end, the fluorescence properties of LAURDAN were studied in synthetic ester and ether phosphatidylcholines and sphingomyelin vesicles below, at and above the corresponding lipid main phase-transition temperature. The excitation spectra of LAURDAN in these environments always show at least two well-resolved bands. In the different lipid vesicles the behavior of the red band in the LAURDAN excitation spectra is sensitive to the lipid chemical environment near the probe fluorescent moiety and to the packing of the different lipid phases (gel and liquid crystalline). We propose that the interaction between the LAURDAN dimethylamino group and the ester linkage of ester phospholipids is responsible for the strong stabilization of LAURDAN's red excitation band in the gel phase of ester phospholipid vesicles. We discuss the consequence of these proposed ground-state interactions on LAURDAN's emission generalized polarization function. In the context of variable excitation wavelengths, information concerning solvent dipolar relaxation through excitation generalized polarization function is also discussed.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-