Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Coexistence of superconductivity with partially filled stripes in the Hubbard model

Abstract

The Hubbard model is an iconic model in quantum many-body physics and has been intensely studied, especially since the discovery of high-temperature cuprate superconductors. Combining the complementary capabilities of two computational methods, we found superconductivity in both the electron- and hole-doped regimes of the two-dimensional Hubbard model with next-nearest-neighbor hopping. In the electron-doped regime, superconductivity was weaker and was accompanied by antiferromagnetic Néel correlations at low doping. The strong superconductivity on the hole-doped side coexisted with stripe order, which persisted into the overdoped region with weaker hole-density modulation. These stripe orders varied in fillings between 0.6 and 0.8. Our results suggest the applicability of the Hubbard model with next-nearest hopping for describing cuprate high-transition temperature (Tc) superconductivity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View