Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Amphetamine increases activity but not exploration in humans and mice

Abstract

Rationale

Cross-species quantification of physiological behavior enables a better understanding of the biological systems underlying neuropsychiatric diseases such as bipolar disorder (BD). Cardinal symptoms of manic BD include increased motor activity and goal-directed behavior, thought to be related to increased catecholamine activity, potentially selective to dopamine homeostatic dysregulation.

Objectives

The objective of this study was to test whether acute administration of amphetamine, a norepinephrine/dopamine transporter inhibitor and dopamine releaser, would replicate the profile of activity and exploration observed in both humans with manic BD and mouse models of mania.

Methods

Healthy volunteers with no psychiatric history were randomized to a one-time dose of placebo (n = 25), 10 mg d-amphetamine (n = 18), or 20 mg amphetamine (n = 23). Eighty mice were administered one of four doses of d-amphetamine or vehicle. Humans and mice were tested in the behavioral pattern monitor (BPM), which quantifies motor activity, exploratory behavior, and spatial patterns of behavior.

Results

In humans, the 20-mg dose of amphetamine increased motor activity as measured by acceleration without marked effects on exploration or spatial patterns of activity. In mice, amphetamine increased activity, decreased specific exploration, and caused straighter, one-dimensional movements in a dose-dependent manner.

Conclusions

Consistent with mice, amphetamine increased motoric activity in humans without increasing exploration. Given that BD patients exhibit heightened exploration, these data further emphasize the limitation of amphetamine-induced hyperactivity as a suitable model for BD. Further, these studies highlight the utility of cross-species physiological paradigms in validating biological mechanisms of psychiatric diseases.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View