Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

A quantitative Doignon-Bell-Scarf theorem

Abstract

The famous Doignon-Bell-Scarf theorem is a Helly-type result about the existence of integer solutions to systems of linear inequalities. The purpose of this paper is to present the following quantitative generalization: Given an integer k, we prove that there exists a constant c(n,k), depending only on the dimension n and k, such that if a polyhedron {x∈Rn: Ax≤b} contains exactly k integer points, then there exists a subset of the rows, of cardinality no more than c(n,k), defining a polyhedron that contains exactly the same k integer points. In this case c(n,0)=2n as in the original case of Doignon-Bell-Scarf for infeasible systems of inequalities. We work on both upper and lower bounds for the constant c(n,k) and discuss some consequences, including a Clarkson-style algorithm to find the l-th best solution of an integer program with respect to the ordering induced by the objective function.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View