- Main
A quantum inspired machine learning approach for multimodal Parkinsons disease screening.
Abstract
Parkinsons disease, currently the fastest-growing neurodegenerative disorder globally, has seen a 50% increase in cases within just two years. As disease progression impairs speech, memory, and motor functions over time, early diagnosis is crucial for preserving patients quality of life. Although machine-learning-based detection has shown promise for detecting Parkinsons disease, most studies rely on a single feature for classification and can be error-prone due to the variability of symptoms between patients. To address this limitation we utilized the mPower dataset, which includes 150,000 samples across four key biomarkers: voice, gait, tapping, and demographic data. From these measurements, we extracted 64 features and trained a baseline Random Forest model to select the features above the 80th percentile. For classification, we designed a simulatable quantum support vector machine (qSVM) that detects high-dimensional patterns, leveraging recent advancements in quantum machine learning. With this novel and simulatable architecture that can be run on standard hardware rather than resource-intensive quantum computers, our model achieves an accuracy of 90%, F-1 score of 0.90, and an AUC of 0.98-surpassing benchmark models. Utilizing an innovative classification framework built on a diverse set of features, our model offers a pathway for accessible global Parkinsons screening.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-