- Main
Coherent-Precipitation-Stabilized Phase Formation in Over-Stoichiometric Rocksalt-Type Li Superionic Conductors.
Published Web Location
https://doi.org/10.1002/adma.202416342Abstract
Rationalizing synthetic pathways is crucial for material design and property optimization, especially for polymorphic and metastable phases. Over-stoichiometric rocksalt (ORX) compounds, characterized by their face-sharing configurations, are a promising group of materials with unique properties; however, their development is significantly hindered by challenges in synthesizability. Here, taking the recently identified Li superionic conductor, over-stoichiometric rocksalt Li-In-Sn-O (o-LISO) material as a prototypical ORX compound, the mechanisms of phase formation are systematically investigated. It is revealed that the spinel-like phase with unconventional stoichiometry forms as coherent precipitate from the high-temperature-stabilized cation-disordered rocksalt phase upon fast cooling. This process prevents direct phase decomposition and kinetically locks the system in a metastable state with the desired face-sharing Li configurations. This insight enables us to enhance the ionic conductivity of o-LISO to be >1 mS cm-1 at room temperature through low-temperature post-annealing. This work offers insights into the synthesis of ORX materials and highlights important opportunities in this new class of materials.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-