Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Speeding Up Percolator

Abstract

The processing of peptide tandem mass spectrometry data involves matching observed spectra against a sequence database. The ranking and calibration of these peptide-spectrum matches can be improved substantially using a machine learning postprocessor. Here, we describe our efforts to speed up one widely used postprocessor, Percolator. The improved software is dramatically faster than the previous version of Percolator, even when using relatively few processors. We tested the new version of Percolator on a data set containing over 215 million spectra and recorded an overall reduction to 23% of the running time as compared to the unoptimized code. We also show that the memory footprint required by these speedups is modest relative to that of the original version of Percolator.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View