
UC Davis
UC Davis Previously Published Works

Title
Speeding Up Percolator

Permalink
https://escholarship.org/uc/item/1jw811bk

Journal
Journal of Proteome Research, 18(9)

ISSN
1535-3893

Authors
Halloran, John T
Zhang, Hantian
Kara, Kaan
et al.

Publication Date
2019-09-06

DOI
10.1021/acs.jproteome.9b00288
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jw811bk
https://escholarship.org/uc/item/1jw811bk#author
https://escholarship.org
http://www.cdlib.org/


Speeding up Percolator

John T. Halloran1, Hantian Zhang2, Kaan Kara2, Cédric Renggli2, Matthew The3, Ce Zhang2, 
David M. Rocke1, Lukas Käll3, William Stafford Noble*,4,5

1Department of Public Health Sciences, University of California, Davis, Davis, CA, USA 
2Department of Computer Science, ETH Zurich, Zurich, Switzerland 3Science for Life Laboratory, 
KTH — Royal Institute of Technology, Solna, Sweden 4Department of Genome Sciences, 
University of Washington, Seattle, WA, USA 5Paul Allen School of Computer Science and 
Engineering, University of Washington, Seattle, WA, USA

Abstract

The processing of peptide tandem mass spectrometry data involves matching observed spectra 

against a sequence database. The ranking and calibration of these peptide-spectrum matches can 

be improved substantially by using a machine learning post-processor. Here, we describe our 

efforts to speed up one widely used post-processor, Percolator. The improved software is 

dramatically faster than the previous version of Percolator, even when using relatively few 

processors. We tested the new version of Percolator on a data set containing over 215 million 

spectra and recorded an overall reduction to 23% of the running-time as compared to the 

unoptimized code. We also show that the memory footprint required by these speedups is modest 

relative to that of the original version of Percolator.

Graphical Abstract

* noble@gs.washington.edu. 

HHS Public Access
Author manuscript
J Proteome Res. Author manuscript; available in PMC 2020 September 06.

Published in final edited form as:
J Proteome Res. 2019 September 06; 18(9): 3353–3359. doi:10.1021/acs.jproteome.9b00288.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

tandem mass spectrometry; machine learning; support vector machine; SVM; percolator

1 Introduction

The field of proteomics is growing rapidly, driven in large part by advances in our ability to 

identify and quantify proteins of complex biological samples in a high throughput fashion. 

In particular, technological advances in tandem mass spectrometry have made full proteome 

measurements much easier to carry out, with the result that large data sets must be analyzed 

in more labs and with greater frequency than in the past. These analysis workflows typically 

consist of a detection phase, wherein observed spectra are assigned peptide sequences and 

the resulting peptide-spectrum matches are combined to draw inferences about the detection 

of peptides and proteins, and a subsequent quantitation phase, wherein the abundances of 

peptides and proteins are inferred. This work focuses on speeding up a particular algorithm, 

Percolator, which is used during the detection phase of tandem mass spectrometry analysis.
12

1.1 Percolator

The first step in this phase of the analysis is to attempt to infer the identity of the peptide 

species primarily responsible for generating each observed spectrum. This task is most 

commonly carried out by a database search algorithm, which compares an observed 

spectrum to a series of theoretical spectra derived from peptides in a given database. The 

first database search algorithm was published in 1994,6 and dozens have been produced in 

the ensuing two decades. However, by the early 2000s it was becoming clear that 

interpreting the scores produced by any given search engine was challenging. At that time, 

state-of-the-art methods for attempting to separate correct from incorrect peptide-spectrum 

matches (PSMs) involved applying hand-selected, charge-state specific thresholds30 or using 

probabilistic reasoning to interpret the scores.18 Concurrently, two research groups 

developed machine learning methods for addressing this interpretation problem, one based 

on linear discriminant analysis14 and one based on support vector machines (SVMs).1 These 

methods provided a powerful new way to combine multiple PSM features into a single, 

interpretable quality measure.

Percolator, which was described several years later, is thus a second-generation method. Its 

primary innovation was to use semi-supervised learning to improve the generalization ability 

of the learning system (Figure 1). Early machine learning methods for PSM scoring suffered 

from poor generalizability because they were trained using hand-curated data sets, and this 

manual curation had to be repeated for each new experimental setting. Percolator avoids the 

need for manual curation by training a classifier to distinguish between real PSMs (called 

“target PSMs”) and decoy PSMs (i.e., shuffled or reversed peptide sequences). This task is 

semi-supervised because the decoy PSMs have labels (“incorrect”) but the target PSMs are 

an unlabeled mixture of correct and incorrect PSMs. Percolator uses an iterative semi-

supervised machine learning algorithm in which the inner loop is an SVM classifier. The 

method is fast because Percolator makes use of an optimization algorithm specific to linear 

Halloran et al. Page 2

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SVMs.23 A cross-validation scheme is employed to allow the target PSMs to also be used 

for statistical confidence estimation.9 Subsequently, Percolator was improved via the 

inclusion of sophisticated statistical confidence estimation procedures13 and the 

incorporation of a Bayesian protein inference algorithm.20

Percolator has been broadly adopted and adapted by the computational mass spectrometry 

community. The initial publication demonstrated the utility of Percolator in conjunction with 

SEQUEST6 and Inspect.26 Subsequently, variants of Percolator were developed for use with 

Mascot,2 OMSSA,32 X!Tandem,35 and MS-GF+.8 Percolator has also been improved by use 

of a self-boosting machine learning scheme36 and for use with electron transfer dissociation 

data.34 Percolator is dis tributed via Github and is also distributed by Matrix Science and 

ThermoFisher as part of Mascot and Proteome Discoverer, respectively.

Since the initial description of Percolator, several competing algorithms have been 

published.5, 7, 37 For example, the widely used PeptideProphet algorithm was modified in 

2008 to use the semi-supervised target-decoy approach pioneered by Percolator.3 Recently, 

an independent research group published a comparison of three different search engines in 

combination with five postprocessing methods.29 The study involved eight data sets 

produced from different proteomes and on a variety of mass spectrometry platforms. The 

primary conclusion was that “combinations involving Percolator achieved markedly more 

peptide and protein identifications at the same FDR level than the other 12 combinations for 

all data sets.” Also, for the three tested search engines, Percolator detected between 27.9% 

to 154% more PSMs at a 1% FDR compared to using the raw search engine scores.

1.2 Motivation

In this work, we describe our recent, successful efforts to dramatically speed up the 

Percolator software. Our motivation for carrying out this work was three-fold.

First, in general, faster software is better than slower software. Even when the input to 

Percolator is relatively small and the analysis only takes a few minutes, we believe that users 

will appreciate even faster execution. In many cases, the speedups reported here will enable 

interactive use of Percolator, since the improved software delivers results much more 

quickly. Particularly for large data sets, proper FDR control is critical to appropriately 

interpret the data. In such cases, long running times may deter researchers from running 

Percolator and hence may lead to invalid conclusions due to poorly calibrated or improperly 

interpreted search scores.

Second, faster software is particularly important for the analysis of large data sets. In 

analyses involving millions of spectra, the previous version of Percolator can take many 

hours or even days to run. Previously, we have argued that an effective speed-up can be 

obtained simply by downsampling (i.e., randomly discarding a portion of the input data).28 

However, the downsampling approach can be problematic when the input data contains 

relatively few high-quality PSMs. Furthermore, from a practical perspective, downsampling 

introduces an additional user-level parameter—the downsampling rate—that may be difficult 

to set a priori.

Halloran et al. Page 3

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Third, speeding up the Percolator algorithm has the potential to enable research into 

methods that use more complex sets of features. Currently, the standard version of 

Percolator uses a small set of features that varies slightly depending on the search engine. 

More complex feature sets include, for example, subscores corresponding to different ion 

types,25 scores from multiple search engines,31 similarity scores from fragment intensity 

prediction21 and probabilistic gradient information of PSMs.10 Such sets have the potential 

to improve Percolator’s performance but lead to a corresponding increase in running time. 

Percolator has also been adopted for applications that it was not originally intended for. For 

example, it was adapted for use for the annotaion of metabolites in imaging mass 

spectrometry,22 grouping of MS1-features in label-free quantification27 and with the 

OpenSWATH pipeline for analysis of data generated using data independent acquisition. In 

this setting, the number of features associated with each datapoint can be quite large. 

Furthermore, a side benefit of our speed-up efforts is that Percolator’s inference engine can 

now support, in principle, the use of a non-linear SVM classifier. This feature may be 

particularly useful in the context of research into more complex feature spaces, where non-

linearity may be necessary to achieve good discrimination performance.

1.3 Contributions

In what follows, we describe how we sped up Percolator and provide empirical evidence that 

the new version is significantly faster. The speedups combat two major computational 

bottlenecks, which arise particularly in the analysis of massive proteomics data sets. The 

first such bottleneck concerns data input and output. In pursuing these speedups, we 

discovered, to our surprise, that a substantial portion of Percolator’s running time was 

dominated by reading and writing data. Accordingly, we show that overall runtime may be 

appreciably improved by speeding up input/output (I/O) tasks. The second bottleneck is the 

execution time required to learn SVM parameters. Recent work11 has tackled this bottleneck 

through software optimizations to Percolator’s SVM learning engine, and our efforts 

complement and further improve upon these optimizations.

On a massive data set containing over 215 million PSMs, the new version of Percolator 

achieves an overall speedup of 439% (81.4 hours down to 18.6 hours). We show that the 

improved software efficiently uses multiple processors, quickly approaching optimal 

performance using relatively few such processors. Furthermore, we show that the memory 

footprint required by these speedups is modest relative to that of the original version of 

Percolator. The improved version of Percolator is freely available with an Apache license at 

https://github.com/percolator/percolator/tree/pthread-speedup.

2 Methods

2.1 Software optimization

Percolator trains a series of SVM classifiers in an iterative, semi-supervised learning 

scheme. The program receives as input a collection of target and decoy PSMs, each one 

summarized using a fixed-length vector of features. A linear SVM is trained to distinguish 

high-scoring target PSMs from decoy PSMs. To prevent overfitting, this training is done 

using a nested cross-validation scheme.9 Thus, a separate SVM is learned using the PSMs 

Halloran et al. Page 4

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/percolator/percolator/tree/pthread-speedup


within each fold, and the PSM scores are then merged. This training procedure repeats for a 

user specified number of iterations (ten, by default), updating the set of high-scoring target 

PSMs at each iteration. In the end, input PSMs are scored by the final learned SVM.

We started with Percolator v3.02, which uses a conjugate gradient least squares (CGLS) 

SVM implementation,23 and we proceeded to experiment with three successive 

optimizations (Table 1). The first speedup tackles the observation that a significant portion 

of Percolator execution time is spent on data I/O. In particular, reading in PSMs from disk to 

system memory required a substantial amount of overall runtime for large datasets. We thus 

focused on the parallelization of data I/O in Percolator using GNU libstdc++ parallel mode.
24 Once enabled through the compiler flag -D GLIBCXX PARALLEL, this mode 

automatically parallelizes the standard library functions that load features into memory prior 

to SVM analysis.

The next speedup deals with the manner in which Percolator’s nested cross-validation is 

carried out. While the outer folds in Percolator are run in parallel, the inner folds are 

implemented in a sequential manner. We thus reimplemented this procedure such that the 

nested inner folds are run in parallel, using a user-specified number of threads. Finally, we 

optimized the CGLS solver itself using a mixture of low-level linear algebra function calls 

and software streamlining, as described previously.11

Optimizations are compared against the recently described CGLS multithreaded speedup,11 

referred to as CGLS-par. In contrast to the second in our series of optimizations, which uses 

multiple threads to parallelize runs of CGLS at the cross-validation level, CGLS-par instead 

uses multiple threads to parallelize computation within the CGLS algorithm.

2.2 Data sets

We analyzed two published drafts of the human proteome and one Plasmodium falciparum 
data set (Table 2). The mass spectrometry data comprising the Kim et al. draft map of the 

human proteome16 consists of 25 million high resolution mass spectra contained in raw mass 

spectrometry data files representing >2,000 acquisitions on 30 histologically normal human 

cell and tissue types, including 17 adult tissues, 7 fetal tissues, and 6 hematopoietic cell 

types, fractionated by SDS-PAGE and analyzed on high resolution Fourier transform mass 

spectrometers (LTQ-Orbitrap Elite and LTQ-Orbitrap Velos) with HCD fragmentation. The 

data underlying the Wilhelm et al. draft map of the human proteome33 consists of mass 

spectrometry data files representing 19,433 acquisitions on 31 human tissue types and body 

fluids from healthy volunteers, fractionated by NuPage gel and analyzed on an LTQ-

Orbitrap Elite and LTQ-Orbitrap Velos instruments with HCD fragmentation and LTQ-

Orbitrap XL instruments with CID fragmentation. For both human data sets, RAW files were 

converted to mzML format using msconvert15 with peak-picking and deisotoping filters (--

filter “peakPicking vendor msLevel=2” --filter “MS2Deisotope Poisson”).

Both human data sets were searched similarly. We downloaded the Uniprot human reference 

proteome from http://www.uniprot.org/proteomes/UP000005640 on Feb 17, 2016. We 

generated a peptide index for database search using the Tide search engine,4 as implemented 

in Crux,17 allowing for a maximum of two missed tryptic cleavages and two oxidized 

Halloran et al. Page 5

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.uniprot.org/proteomes/UP000005640


methionine residues on each peptide. For each peptide in the index, Tide automatically 

generates a decoy peptide by shuffling residues, leaving N- and C-terminal residues in place. 

We then used Tide to search each converted data file against the database with the following 

parameters: 50 ppm precursor tolerance; 0.02 Da fragment bin width; remove precursor 

peaks from spectra.

The Saraf data set19 data set is generated from a collection of Plasmodium falciparum 
samples collected at seven time points during the red blood cell stages of the parasite life 

cycle. The resulting peptide mixtures were analyzed by MudPIT on a Thermo Scientific 

LTQ Orbitrap. In this study, which focused on detection of histone modifications, a total of 

504 MS/MS runs were collected. This data was searched using Tide against a database of 18 

Plasmodium histone proteins, digested non-enzymatically and allowing a wide variety of 

modifications, and up to two modifications per peptide. The corresponding tide-index 

options are --enzyme no-enzyme --mods-spec 2KR+14.0157,2MLPDHY+15.9949,2LR

+27.9949,2KR+28.0314,2K+42.0470,2KST+42.0106,2L+68.0261,2STY+79.9663,2L

+114.0429 --nterm-peptide-mods-spec 1MSAV+42.0106,1M+58.0055. This set of 

modifications results in a database containing 88,143,399 distinct target peptides. Searches 

were performed against a concatenated target-decoy database (--concat T) with a 10 ppm 

search window (--precursor-window 10 --precursor-window-type ppm) using exact p-value 

scoring (--exact-p-value T) and removing precursor peaks (--remove-precursor-peak T).

2.3 Experimental environment

All computational experiments were run using a multicore compute server with one terabyte 

of RAM, comprised of Intel Xeon E7–4830 v3 CPUs clocked at 2.10 GHz. In order to 

accurately measure each method’s performance under standard use, Percolator’s outer cross-

validation folds were run in parallel for all timing tests.

2.4 Software details

The optimizations described herein are supported for Unix-based platforms and freely 

available at https://github.com/percolator/percolator/tree/pthread-speedup. To enable these 

speedups, users can specify the additional command-line option --ncposthreads, which 

control the number of threads employed within each of the three outermost cross-validation 

folds. Thus, for a number of threads n specified using --ncposthreads n, the total number of 

threads utilized is 3n. Our speedups are compared against CGLS-par, the optimized 

multithreaded solver described in,11 updating the software described therein to the current 

Percolator release. For the number of threads per cross-validation fold n, CGLS-par was run 

using k = 3n total threads by setting the flag -nrk.

3 Results

3.1 Large-scale SVM learning timing tests

The methods listed in Table 1 were tested on the Wilhelm, Kim, and Saraf data sets. For the 

large-scale Kim and Saraf data sets, reported runtimes are the minimum over three separate 

runs, where original Percolator runtime required 11.85 hours and 7.5 hours, respectively. 

Due to the long runtime for the massive-scale Wilhelm data set—the original Percolator 

Halloran et al. Page 6

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/percolator/percolator/tree/pthread-speedup


SVM learning time was 69.86 hours for this data set, and additionally required over eleven 

hours to load the data—carefully monitored single runtimes are reported. All evaluated 

methods were run using 2, 4, 6, 8, and 10 threads per each of the three cross-validation folds.

The resulting runtimes (Table 3 and Figure 2) improve after each successive optimization, 

and the improvement is more pronounced when more cores are used. Furthermore, a 

comparison to CGLS-par (which only improves SVM learning time) excluding the I/O 

runtime benefits of optimization 1 shows that our optimizations drastically improve the 

SVM learning component of Percolator relative to this alternative approach for all thread 

configurations considered (Figure 3).

3.2 Memory consumption

In addition to characterizing the relative speedups of the various optimization methods, we 

also measured their relative memory footprints. Toward this end, each method was further 

tested over a random subset of the Kim data set containing approximately eight million 

PSMs. For each method, memory consumption was measured as the “Maximum resident set 

size,” as reported by GNU time.

In this experiment, successive optimizations and further speedups required an increase in 

memory usage, largely owing to the parallelization of solver calls in optimizations 2 and 3. 

For 2, 4, 6, 8, and 10 threads per each of the Percolator cross-validation folds, the resulting 

system memory used for successive optimizations 2 and 3 slowly grows with the increased 

number of threads (Figure 4), where original Percolator memory consumption was 12.2 GB 

and the maximum memory consumption for optimizations 1, 2, and 3 were 13.7 GB, 23.4 

GB, and 41.1 GB, respectively. Thanks to the substantially improved overall runtime, 

allocated system memory was also quickly released, thus allowing the use of ten times the 

number of original Percolator threads while only requiring 3.37 times the memory use.

4 Discussion

Each of our successive optimizations speed up Percolator execution, culminating in a 

substantial decrease in overall runtime. We compare all optimizations against CGLS-par, the 

recent multithreaded approach of Halloran and Rocke,11 wherein multiple threads are used 

to parallelize computation within Percolator’s SVM learning solver (CGLS). In contrast to 

CGLS-par, our approach to multithreading-wherein multiple threads are used to parallelize 

calls to CGLS within Percolator’s cross-validation scheme-is much faster irrespective of the 

number of threads employed. Furthermore, the final optimization rapidly approaches peak 

performance relative to the number of threads utilized, making these speedups useful for 

both common compute environments (such as desktops) and higher-end parallel 

architectures (such as compute clusters).

Owing to the nature of the parallelization exploited herein (i.e., multiple calls to CGLS run 

in parallel), the presented speedups require higher memory usage, as demonstrated in Figure 

4. However, the increased memory usage is far from restrictive when considering the 

speedups gained, instead offering a flexible tradeoff between speed and memory resources. 

For instance, peak performance (of optimization 3) for all data sets is nearly obtained using 

Halloran et al. Page 7

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



four threads per cross-validation fold, which requires only slightly more than double normal 

Percolator memory usage to achieve an average 4.6 times faster runtime over the large-scale 

data sets considered. For even more restrictive memory settings, the minimum multithreaded 

setting of two threads per cross-validation fold still completes an average 3.6 times faster 

over the large-scale data sets while only requiring 50% more memory than the original 

Percolator. In the event multithreading is completely disabled, users will still see an 

appreciable decrease in runtime owing to optimization 1. For example, I/O for the Wilhelm 

data set was reduced from 11.5 hours down to just 4.5 hours.

In future work, we plan to explore the use of these optimizations to enable nonlinear 

classification in Percolator. Percolator currently uses a linear kernel wherein the learned 

decision boundary between targets and decoys is a hyperplane in the input space. In contrast, 

analysis of complex data sets—which possibly require more complicated decision 

boundaries to discriminate targets from decoys—may be improved through the use of non-

linear kernels, at the cost of increased runtimes. The optimizations presented herein thus 

render the exploration of such non-linear kernels feasible for Percolator analysis.

Acknowledgments

We thank Bernhard Kuster and Mathias Wilhelm at Technische Universitaet München for providing us with access 
to the data from the Wilhelm et al. study. This work was supported, in part, by the National Center for Advancing 
Translational Sciences (NCATS), National Institutes of Health, through grant UL1 TR001860 and by National 
Institutes of Health award R01 GM121818 to W.S.N. L.K. was supported by a grant from the Swedish Research 
Council (grant 2017-04030).

References

1. Anderson DC, Li W, Payan DG, and Noble WS. A new algorithm for the evaluation of shotgun 
peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra 
and SEQUEST scores. Journal of Proteome Research, 2(2):137–146, 2003. [PubMed: 12716127] 

2. Brosch M, Yu L, Hubbard T, and Choudhary J. Accurate and sensitive peptide identification with 
Mascot Percolator. Journal of Proteome Research, 8(6):3176–3181, 2009. [PubMed: 19338334] 

3. Choi H and Nesvizhskii AI. Semisupervised model-based validation of peptide identifications in 
mass spectrometry-based proteomics. Journal of Proteome Research, 7(1):254–265, 2008. 
[PubMed: 18159924] 

4. Diament B and Noble WS. Faster SEQUEST searching for peptide identification from tandem mass 
spectra. Journal of Proteome Research, 10(9):3871–3879, 2011. [PubMed: 21761931] 

5. Du X, Yang F, Manes NP, Stenoien DL, Monroe ME, Adkins JN, States DJ, Purvine SO, Camp DG, 
and Smith RD. Linear discriminant analysis-based estimation of the false discovery rate for 
phosphopeptide identifications. Journal of Proteome Research, 7:2195–2203, 2008. [PubMed: 
18422353] 

6. Eng JK, McCormack AL, and Yates JR III. An approach to correlate tandem mass spectral data of 
peptides with amino acid sequences in a protein database. Journal of the American Society for Mass 
Spectrometry, 5:976–989, 1994. [PubMed: 24226387] 

7. Gonnelli G, Stock M, Verwaeren J, Maddelein D, De Baets B, Martens L, and Degroeve S. A decoy-
free approach to the identification of peptides. Journal of Proteome Research, 14:1792–1798, 2015. 
[PubMed: 25714903] 

8. Granholm V, Kim S, Navarro JCF, Sjölund E, Smith RD, and Käll L. Fast and accurate database 
searches with MS-GF+Percolator. Journal of Proteome Research, 13:890–897, 2014. [PubMed: 
24344789] 

9. Granholm V, Noble WS, and Käll L. A cross-validation scheme for machine learning algorithms in 
shotgun proteomics. BMC Bioinformatics, 13(Suppl 16):S3, 2012.

Halloran et al. Page 8

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Halloran JT and Rocke DM. Gradients of generative models for improved discriminative analysis 
of tandem mass spectra. In Advances in Neural Information Processing Systems, pages 5724–
5733, 2017. [PubMed: 31745382] 

11. Halloran JT and Rocke DM. A matter of time: faster Percolator analysis via efficient SVM learning 
for large-scale proteomics. Journal of Proteome Research, 17(5):1978–1982, 2018. [PubMed: 
29607643] 

12. Käll L, Canterbury J, Weston J, Noble WS, and MacCoss MJ. A semi-supervised machine learning 
technique for peptide identification from shotgun proteomics datasets. Nature Methods, 4:923–25, 
2007. [PubMed: 17952086] 

13. Käll L, Storey J, and Noble WS. Nonparametric estimation of posterior error probabilities 
associated with peptides identified by tandem mass spectrometry. Bioinformatics, 24(16):i42–i48, 
2008. [PubMed: 18689838] 

14. Keller A, Nesvizhskii AI, Kolker E, and Aebersold R. Empirical statistical model to estimate the 
accuracy of peptide identification made by MS/MS and database search. Analytical Chemistry, 
74:5383–5392, 2002. [PubMed: 12403597] 

15. Kessner D, Chambers M, Burke R, Agnus D, and Mallick P. Proteowizard: open source software 
for rapid proteomics tools development. Bioinformatics, 24(21):2534–2536, 2008. [PubMed: 
18606607] 

16. Kim M, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, 
Isserlin R, Jain S, et al. A draft map of the human proteome. Nature, 509(7502):575–581, 2014. 
[PubMed: 24870542] 

17. McIlwain S, Tamura K, Kertesz-Farkas A, Grant CE, Diament B, Frewen B, Howbert JJ, 
Hoopmann MR, Käll L, Eng JK, MacCoss MJ, and Noble WS. Crux: rapid open source protein 
tandem mass spectrometry analysis. Journal of Proteome Research, 13(10):4488–4491, 2014. 
[PubMed: 25182276] 

18. Moore RE, Young MK, and Lee TD. Qscore: An algorithm for evaluating SEQUEST database 
search results. Journal of the American Society for Mass Spectrometry, 13(4):378–386, 2002. 
[PubMed: 11951976] 

19. Saraf A, Cervantes S, Bunnik EM, Ponts N, Sariu ME, Chung DD, Prudhomme J, Varberg JM, 
Wen Z, Washburn MP, Florens L, and Le Roch KG. Dynamic and combinatorial landscape of 
histone modifications during the intraerythrocytic developmental cycle of the malaria parasite. 
Journal of Proteome Research, 15(8):2878–2801, 2016.

20. Serang O, MacCoss MJ, and Noble WS. Efficient marginalization to compute protein posterior 
probabilities from shotgun mass spectrometry data. Journal of Proteome Research, 9(10):5346–
5357, 2010. [PubMed: 20712337] 

21. Silva AS, Martens L, and Degroeve S. Accurate peptide fragmentation predictions allow data 
driven approaches to replace and improve upon proteomics search engine scoring functions. 
bioRxiv, page 428805, 2018.

22. Silva ASC, Palmer A, Kovalev V, Tarasov A, Alexandrov T, Martens L, and Degroeve S. Data-
driven rescoring of metabolite annotations significantly improves sensitivity. Analytical Chemistry, 
90(19):11636–11642, 2018. [PubMed: 30188119] 

23. Sindhwani V and Keerthi SS. Large scale semi-supervised linear SVMs In SIGIR ‘06: Proceedings 
of the 29th annual international ACM SIGIR conference on Research and development in 
information retrieval, pages 477–484, New York, NY, USA, 2006 ACM Press.

24. Singler J and Konsik B. The gnu libstdc++ parallel mode: software engineering considerations. In 
Proceedings of the 1st international workshop on Multicore software engineering, pages 15–22. 
ACM, 2008.

25. Spivak M, Weston J, Bottou L, Käll L, and Noble WS. Improvements to the Percolator algorithm 
for peptide identification from shotgun proteomics data sets. Journal of Proteome Research, 8(7):
3737–3745, 2009. [PubMed: 19385687] 

26. Tanner S, Shu H, Frank A, Wang Ling-Chi, Zandi E, Mumby M, Pevzner PA, and Bafna V. 
InsPecT: Identification of posttranslationally modified peptides from tandem mass spectra. 
Analytical Chemistry, 77:4626–4639, 2005. [PubMed: 16013882] 

Halloran et al. Page 9

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. The M and Käll L. Focus on the spectra that matter by clustering of quantification data in shotgun 
proteomics. BioRxiv, page 488015, 2018.

28. The M, MacCoss MJ, Noble WS, and Käll Lukas. Fast and accurate protein false discovery rates 
on large-scale proteomics data sets with Percolator 3.0. Journal of the American Society of Mass 
Spectrometry, 27(11):1719–1727, 2016.

29. Tu C, Sheng Q, Li J, Ma D, Shen X, Wang W, Shyr Y, Yi Z, and Qu J. Optimization of search 
engines and postprocessing approaches to maximize peptide and protein identification for high-
resolution mass data. Journal of Proteome Research, 14(11):4662–4673, 2015. [PubMed: 
26390080] 

30. Washburn MP, Wolters D, and Yates JR III. Large-scale analysis of the yeast proteome by 
multidimensional protein identification technology. Nature Biotechnology, 19:242–247, 2001.

31. Wen B, Du C, Li G, Ghali F, Jones AR, Käll L, Xu S, Zhou R, Ren Z, Feng Q, Xu X, and Wang J. 
Ipeak: An open source tool to combine results from multiple ms/ms search engines. Proteomics, 
15(17):2916–2920, 2015. [PubMed: 25951428] 

32. Wen B, Li G, Wright JC, Du C, Feng Q, Xu X, Choudhary JS, and Wang J. The 
OMSSAPercolator: an automated tool to validate OMSSA results. Proteomics, 14(9):1011–1014, 
2014. [PubMed: 24504981] 

33. Wilhelm Mathias, Schlegl Judith, Hahne Hannes, Gholami Amin Moghaddas, Lieberenz Marcus, 
Savitski Mikhail M, Ziegler Emanuel, Butzmann Lars, Gessulat Siegfried, Marx Harald, et al. 
Mass-spectrometry-based draft of the human proteome. Nature, 509(7502):582–587, 2014. 
[PubMed: 24870543] 

34. Wright JC, Collins MO, Yu L, Käll L, Brosch M, and Choudhary JS. Enhanced peptide 
identification by electron transfer dissociation using an improved Mascot Percolator. Molecular 
and Cellular Proteomics, 11(8):478–491, 2012. [PubMed: 22493177] 

35. Xu M, Li Z, and Li L. Combining Percolator with X!Tandem for accurate and sensitive peptide 
identification. Journal of Proteome Research, 12(6):3026–3033, 2013. [PubMed: 23581882] 

36. Yang P, Ma J, Wang P, Zhu Y, Zhou BB, and Yang YH. Improving X!Tandem on peptide 
identification from mass spectrometry by self-boosted Percolator. IEEE/ACM Transactions on 
Computational Biology and Bioinformatics, 9(5):1273–1280, 2012. [PubMed: 22689082] 

37. Zhang J, Ma J, Dou L, Wu S, Qian X, Xie H, Zhu Y, Zhang FH, Ma J, Dou L, Wu S, Qian X, Xie 
H, Zhu Y, and He F. Bayesian nonparametric model for the validation of peptide identification in 
shotgun proteomics. Molecular and Cellular Proteomics, 8(3):547–557, 2009. [PubMed: 
19005226] 

Halloran et al. Page 10

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Overview of the Percolator algorithm.
(A) Components of the software. Output PSMs, peptides and proteins are associated with q-

values (a measure of false discovery rate) and posterior error probabilities. (B) The core 

learning algorithm. The input is a set of feature vectors, labeled as targets and decoys. 

Targets and decoys are ranked according to a selected feature, and target PSMs with 1% 

false discovery rate (FDR) are identified. An SVM is trained to discriminate between the 

selected targets and the full set of decoys. The SVM induces a new ranking, and the 

procedure iterates until the ranking stops changing.

Halloran et al. Page 11

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Speedups after successive Percolator optimizations.
Each panel plots the total runtime divided by the original Percolator runtime, as a function of 

the number of threads per cross-validation folds. The successive optimizations are compared 

against the version of CGLS optimized for multithreaded use in,11 referred to as CGLS-par. 

Reported runtimes for the Kim and Saraf data sets are the minimum wall-clock times 

measured over three runs and reported runtimes for the much larger Wilhelm data set are the 

product of a single run.

Halloran et al. Page 12

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Speedups only considering SVM solver runtime.
Each panel plots the total SVM learning runtime divided by the original Percolator SVM 

learning runtime, as a function of the number of threads per cross-validation folds. 

Optimizations only affecting SVM learning time (i.e., Opt. 2 and Opt. 3) are compared 

against the SVM learning runtime of the version of CGLS optimized for multithreaded use 

in,11 referred to as CGLS-par. Reported runtimes for the Kim and Saraf data sets are the 

minimum wall-clock times measured over three runs and reported runtimes for the much 

larger Wilhelm data set are the product of a single run.

Halloran et al. Page 13

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Comparison of memory consumption.
Each panel plots memory consumption of a given method divided by original Percolator 

memory consumption (y-axis) as a function of the number of threads allocated per cross-

validation fold. These results are for a random subset of 7,710,057 PSMs from the Kim data 

set. Memory consumption was measured as the “Maximum resident set size,” as reported by 

GNU time.

Halloran et al. Page 14

J Proteome Res. Author manuscript; available in PMC 2020 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Halloran et al. Page 15

Table 1:
Percolator optimizations.

Note that in reported results, the optimizations are implemented cumulatively.

Method Description

Optimization 1 Parallelize I/O

Optimization 2 Parallelize inner folds of three-fold cross-validation

Optimization 3 Single-threaded optimizations to CGLS as described in Halloran and Rocke11

J Proteome Res. Author manuscript; available in PMC 2020 September 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Halloran et al. Page 16

Table 2:

Data sets.

Data set Species PSMs

Wilhelm33 Human 215,282,771

Kim16 Human 23,330,311

Saraf19 P. falciparum 38,918,409

J Proteome Res. Author manuscript; available in PMC 2020 September 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Halloran et al. Page 17

Table 3:
Comparison of optimizations on three data sets.

The table lists the runtimes (in hours) of five different methods on three data sets. The original Percolator 

method (“CGLS”) is compared with CGLS optimized for multithreaded use from11 (“CGLS-par”) and the 

three successive optimizations presented in this work. For the multithreaded methods CGLS-par, Opt. 2, and 

Opt. 3, the number of threads per cross-validation fold is denoted below the multithreaded methods as “2t,” 

“4t,” etc. Reported runtimes for the Kim and Saraf data sets are the minimum wall-clock times measured over 

three runs, and reported runtimes for the much larger Wilhelm data set are from a single run.

Data 
Set

CGLS Opt. 
1

CGLS-par Opt. 2 Opt. 3

2t 4t 6t 8t 10t 2t 4t 6t 8t 10t 2t 4t 6t 8t 10t

Wilhelm 81.4 74.3 100.4 63.2 61.4 47.9 49.0 63.3 38.5 37.2 26.6 25.9 24.4 18.7 18.2 18.5 21.2

Kim 12.8 11.1 11.9 8.7 7.4 7.1 6.6 7.3 4.8 3.9 3.4 2.8 3.1 2.5 2.3 2.3 2.2

Saraf 22.5 20.6 18.2 14.6 14.2 14.2 14.2 12.1 8.1 7.0 7.0 6.9 7.0 6.2 6.2 6.2 6.2

J Proteome Res. Author manuscript; available in PMC 2020 September 06.


	Abstract
	Graphical Abstract
	Introduction
	Percolator
	Motivation
	Contributions

	Methods
	Software optimization
	Data sets
	Experimental environment
	Software details

	Results
	Large-scale SVM learning timing tests
	Memory consumption

	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Table 1:
	Table 2:
	Table 3:



