- Main
Essays on Causal Inference and Econometrics
- Xie, Haitian
- Advisor(s): Elliott, Graham;
- Sun, Yixiao
Abstract
This dissertation is a collection of three essays on the econometric analysis of causal inference methods. Chapter 1 examines the identification and estimation of the structural function in fuzzy RD designs with a continuous treatment variable. We show that the nonlinear and nonseparable structural function can be nonparametrically identified at the RD cutoff under shape restrictions, including monotonicity and smoothness conditions. Based on the nonparametric identification equation, we propose a three-step semiparametric estimation procedure and establish the asymptotic normality of the estimator. The semiparametric estimator achieves the same convergence rate as in the case of a binary treatment variable. As an application of the method, we estimate the causal effect of sleep time on health status by using the discontinuity in natural light timing at time zone boundaries.
Chapter 2 examines the local linear regression (LLR) estimate of the conditional distribution function $F(y|x)$. We derive three uniform convergence results: the uniform bias expansion, the uniform convergence rate, and the uniform asymptotic linear representation. The uniformity in the above results is with respect to both $x$ and $y$ and therefore has not previously been addressed in the literature on local polynomial regression. Such uniform convergence results are especially useful when the conditional distribution estimator is the first stage of a semiparametric estimator.
Chapter 3 studies the estimation of causal parameters in the generalized local average treatment effect model, a generalization of the classical LATE model encompassing multi-valued treatment and instrument. We derive the efficient influence function (EIF) and the semiparametric efficiency bound for two types of parameters: local average structural function (LASF) and local average structural function for the treated (LASF-T). The moment condition generated by the EIF satisfies two robustness properties: double robustness and Neyman orthogonality. Based on the robust moment condition, we propose the double/debiased machine learning (DML) estimators for LASF and LASF-T. We also propose null-restricted inference methods that are robust against weak identification issues. As an empirical application, we study the effects across different sources of health insurance by applying the developed methods to the Oregon Health Insurance Experiment.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-