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ABSTRACT OF THE DISSERTATION

Essays on Causal Inference and Econometrics

by

Haitian Xie

Doctor of Philosophy in Economics

University of California San Diego, 2023

Professor Graham Elliott, Co-Chair
Professor Yixiao Sun, Co-Chair

This dissertation is a collection of three essays on the econometric analysis of causal

inference methods. Chapter 1 examines the identification and estimation of the structural function

in fuzzy RD designs with a continuous treatment variable. We show that the nonlinear and

nonseparable structural function can be nonparametrically identified at the RD cutoff under

shape restrictions, including monotonicity and smoothness conditions. Based on the nonparamet-

ric identification equation, we propose a three-step semiparametric estimation procedure and

establish the asymptotic normality of the estimator. The semiparametric estimator achieves the

same convergence rate as in the case of a binary treatment variable. As an application of the

xi



method, we estimate the causal effect of sleep time on health status by using the discontinuity in

natural light timing at time zone boundaries.

Chapter 2 examines the local linear regression (LLR) estimate of the conditional distribu-

tion function F(y|x). We derive three uniform convergence results: the uniform bias expansion,

the uniform convergence rate, and the uniform asymptotic linear representation. The uniformity

in the above results is with respect to both x and y and therefore has not previously been addressed

in the literature on local polynomial regression. Such uniform convergence results are especially

useful when the conditional distribution estimator is the first stage of a semiparametric estimator.

Chapter 3 studies the estimation of causal parameters in the generalized local average

treatment effect model, a generalization of the classical LATE model encompassing multi-valued

treatment and instrument. We derive the efficient influence function (EIF) and the semiparametric

efficiency bound for two types of parameters: local average structural function (LASF) and local

average structural function for the treated (LASF-T). The moment condition generated by the EIF

satisfies two robustness properties: double robustness and Neyman orthogonality. Based on the

robust moment condition, we propose the double/debiased machine learning (DML) estimators

for LASF and LASF-T. We also propose null-restricted inference methods that are robust against

weak identification issues. As an empirical application, we study the effects across different

sources of health insurance by applying the developed methods to the Oregon Health Insurance

Experiment.
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Chapter 1

Nonlinear and Nonseparable Structural
Functions in Fuzzy Regression Discontinu-
ity Designs

1.1 Introduction

The regression discontinuity (RD) design is one of the most important approaches to

causal inference in non-experimental settings. In an RD design, the researcher is interested

in the effect of a treatment T on some outcome Y . The basic idea is that there is an observed

running variable R (also called score or index or forcing variable) such that the treatment varies

discontinuously when the running variable crosses some cutoff (also called threshold) value r̄.

By utilizing the variation induced by this discontinuity, the researcher has the power to identify

and estimate the causal impact of interest.

Most theoretical studies of the RD design assume that the treatment is a binary interven-

tion. However, in empirical studies of RD design, researchers may be interested in a continuous

treatment that takes values inside an interval. Such examples include sleep time [Giuntella and

Mazzonna, 2019], air pollution level [Chen et al., 2013, Ebenstein et al., 2017], and medical

expense for infants [Almond et al., 2010, Barreca et al., 2011]. Our study provides methods for

examining the causal effect of a continuous treatment variable in an RD setting.

With a binary treatment, the sharp design is the case where the treatment can be predicted

1



with certainty by whether or not a running variable R is above or below some cutoff (Figure

1.1(a)). The fuzzy design refers to the case where the treatment probability is a function of the

running variable R and changes discretely at the cutoff (Figure 1.1(b)). Regression discontinuity

methods exploit this predicted variation in the treatment above and below the cutoff to identify

the effect of the treatment.

Figure 1.1. Demonstration of RD designs with a binary treatment.

Graph (a) demonstrates the sharp RD design using a raw scatter plot. Graph (b) demonstrates the fuzzy RD design
using a binscatter plot, where each dot represents the treatment probability in the respective bin.

With a continuous treatment, where all observations are treated to some extent, the

distribution of the treatment is a function of the running variable R, and the distribution of

treatments shifts discretely at the cutoff. It is this variation, as in the binary treatment case, that

allows the identification of the effect of the treatment at the cutoff.

The essence of the idea is shown in Figure 1.2. For any R, we have a distribution of the

treatment T . Suppose that T is increasing in R, as illustrated in Figure 1.2(a). As R increases,

the level of treatment becomes larger, as shown by the increasing quantiles of T . At R = r̄, the

distribution of treatment levels increases discretely, as shown by the discontinuous jump in the

quantiles. This is the discontinuity that will be exploited for estimating the effect of the treatment

2



Figure 1.2. Demonstration of RD designs with a continuous treatment.

Graph (a) demonstrates the regression discontinuities of a continuous treatment variable at different quantile levels.
The plot is a binscatter plot, where each dot represents the corresponding quantile treatment level in the respective
bin. Different quantile regressions bring different discontinuities. Graph (b) plots the conditional quantile curve of
the treatment from just below and just above the cutoff. The horizontal axis specifies which quantile level we are
looking at. The entire difference between these two curves constitutes the content of RD of a continuous treatment
variable. If there is no regression discontinuity, then the two quantile curves would completely overlap. Notice that
we use the same color to denote the corresponding jumps between the two plots.

on the outcome variable. Consider now the distribution of treatments just below and just above

the cutoff. Figure 1.2(b) shows that for R just below the cutoff, the distribution of treatment is

below that of the distribution of treatment immediately above the cutoff. Thus the treatment

levels differ, and we can separate levels of treatment when there is a small variation in R around

this cutoff point.

To capture the causal effect of the treatment T on the outcome Y , we introduce the

structural function

Y = g∗(T,R,ε),

where ε contains unobserved causal factors (for easy reference, ε will be called the error term

hereafter). The structural function g∗ specifies how the treatment T causes the outcome Y

3



together with the running variable R and error term ε . The identification of g∗ is a difficult task,

especially without restricting the functional form of g∗ or the correlation between ε and (T,R).

The goal of our paper is to identify the structural function g∗(·, r̄, ·) by utilizing the discrete shift

in treatment distribution at the cutoff r̄. The proposed method fully describes g∗ at the cutoff.

Summary statistics that are functions of g∗(·, r̄, ·) can also be constructed.

We provide a nonparametric identification result for the structural function. The identifi-

cation assumptions are shape restrictions, including monotonicity and smoothness conditions.

Under these assumptions, the structural function is still allowed to be nonlinear in the treatment

and nonseparable between the treatment and the error term. We propose a three-step semi-

parametric estimation procedure for the identified structural function g∗(·, r̄, ·) and derive the

asymptotic normal distribution of the estimator.

Consider our empirical study for concreteness: we study the causal impact of sleep time

T on health status Y by exploiting the discontinuity in the timing of natural light at time zone

boundaries. In this empirical study, the running variable R is the distance to the time zone

boundary, and the cutoff r̄ is at the time zone boundary. The causal identification is based on

the following fact: Individuals living on the late sunset side of the time zone boundary tend

to go to bed at a later time, while in the morning, everyone gets up and goes to work at 8 am.

Consequently, there is an exogenous variation in sleep time across the time zone boundary. This

RD design based on the time zone system is first proposed by [Giuntella and Mazzonna, 2019].

Figure 1.3(a) shows the histogram of sleep time based on the American Time Use Survey (ATUS)

and demonstrates that sleep time is indeed a continuous treatment variable. Figure 1.3(b) shows

the nonparametric estimates of the conditional quantiles of sleep time. The distribution of the

sleep time for individuals living on the early sunset side first-order stochastically dominates the

distribution on the late sunset side, which is evidence supporting the above identification strategy.

The empirical study can demonstrate the importance of having a general functional

form specification of the structural function. First, there are reasons for one to believe that the

4



Figure 1.3. Empirical illustration of RD designs with a continuous treatment.

Graph (a) shows the histogram of sleep time. Evidently, this variable is better modeled as continuous rather than
discrete. Graph (b) shows the estimated conditional quantile curves of sleep time given that the geographical
location is just west and east of the time zone boundary. The nonparametric estimator used here is the local constant
quantile regression. The RD is clearly observed as the blue curve first-order stochastically dominates the black
curve, a similar situation as demonstrated in Figure 1.2(b).

causal effect from sleep time to health is nonlinear and nonseparable.1 Second, a nonlinear

structural function is required if the researcher wants to find the optimal sleep time for policy

recommendations. A fully linear structural function can only find if more or less sleep is better,

and would recommend sleeping 24 or 0 hours every day. This is obviously not the correct

policy implication, and is at odds with experimental findings. In Section 1.4, we present the

novel empirical results for the estimated structural derivative ∂

∂ t g∗(·, r̄, ·) based on the proposed

estimator and derive the corresponding optimal sleep time.

The rest of the paper is organized as follows. The remaining part of this section discusses

the literature. Section 1.2 introduces the RD model with a continuous treatment and presents

the nonparametric identification result. Section 1.3 proposes the semiparametric estimation

procedure and derives its asymptotic properties. Section 1.4 presents the empirical study and

1The nonlinearity can be due to the fact that both undersleeping and oversleeping are harmful to health [Hairston
et al., 2010]. The nonseparability can be due to the effect heterogeneity caused by unobserved eating habits, which
affect both sleep time and health.
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simulation results. The technical proofs for the identification and estimation results are collected

in Appendices A.1 and A.2, respectively.

1.1.1 Relation to the literature

The RD method is first introduced by Thistlethwaite and Campbell [1960] into the

literature. Hahn et al. [2001] establish the theoretical foundation of RD designs by using the

potential outcome framework and demonstrate the identification of the local average treatment

effect (LATE) for compliers local to the cutoff. Early reviews of the RD design can be found

in Imbens and Lemieux [2008] and Lee and Lemieux [2010]. For more recent reviews, see

Cattaneo and Escanciano [2017] and Cattaneo and Titiunik [2021].

In the empirical studies, researchers typically use the two-stage least squares (TSLS)

method to estimate the following Wald ratio around the cutoff:

Wald ratio =
limr↑r̄E[Y |R = r]− limr↓r̄E[Y |R = r]
limr↑r̄E[T |R = r]− limr↓r̄E[T |R = r]

.

There are two motivations behind this procedure. First, in the binary treatment case, the Wald

ratio would identify the treatment effect.2 Second, in the continuous treatment case, if the

structural function is linear and separable in the treatment, that is, g∗ can be decomposed

as g∗(T,R,ε) = βT + g̃(R,ε), then the Wald ratio would identify the slope coefficient β of

the treatment.3 However, the Wald ratio, as calculated in the literature, cannot identify the

structural function in general because the structural function is infinite-dimensional, while the

Wald ratio only provides one-dimensional summary information. Under general functional form

assumptions on g∗, the Wald ratio is identified as a function of g∗(·, r̄, ·), which represents a

weighted average effect of the treatment T on the outcome Y at the cutoff R = r̄. Important

information in the original structural function, for example, the optimal level of treatment, is lost

2As shown in Hahn et al. [2001], the Wald ratio identifies the average treatment effect in the sharp design and
the local average treatment effect (for the compliers) in the fuzzy design.

3To see that, we can plug the structural function into the definition of the Wald ratio.
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when the structural function is condensed into this scalar weighted average. Hence, there is room

for potential improvement in the above empirical studies by using our semiparametric estimator.

There are a few theoretical studies that extend RD design beyond the standard binary

treatment. Caetano et al. [2020] study RD designs with a multi-valued discrete treatment variable.

Section 3.4.2 of Lee and Lemieux [2010] discusses a fully linear model of RD design with a

continuous treatment. The most relevant paper to ours is the recent work by Dong et al. [2021],

which studies RD designs specifically with a continuous treatment variable. They propose a way

to identify and estimate the Quantile specific LATE (Q-LATE) defined as

limr↑r̄E[Y |U = u,R = r]− limr↓r̄E[Y |U = u,R = r]
limr↑r̄E[T |U = u,R = r]− limr↓r̄E[T |U = u,R = r]

.

The Q-LATE parameter is the Wald ratio given a particular quantile level of the treatment. This

parameter is a weighted average of the derivative of the structural function [Dong et al., 2021,

Section 2.2]. The identification of the Q-LATE parameter is achieved based on assumptions

weaker than our paper. In the current study, we make an effort to directly identify the structural

function and its derivative at the expense of making stronger assumptions. The structural function

itself can be more informative for policy design purposes than a weighted average. In particular,

by identifying the structural function, we can recover not only the Q-LATE parameter but also

many other policy-relevant quantities. For example, in the empirical study in Section 1.4, we

show how the estimated structural function helps determine the optimal sleep time.

Since RD design can be interpreted as a local instrumental variable (IV) approach, our

paper is naturally connected to the large body of nonparametric IV literature. In particular, the

identification result in this paper is related to the literature on instruments with small support:

Torgovitsky [2015, 2017], D’Haultfœuille and Février [2015], Masten and Torgovitsky [2016]

and Ishihara [2021]. These papers examine a model with a discrete IV and a continuous treatment

variable. To directly apply the IV identification result to our setting, we would require the running

variable R to be a valid instrument: R is (conditionally) independent with ε and is excluded from
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the structural function g∗.

The challenge in the RD setting is that the independence and the exclusion restriction

for the running variable R are typically violated. In the time zone example, the location one

lives is correlated with the unobserved eating habits (contained in ε) and may directly affect

the health status Y . The contribution of our paper is to formally establish the identification of

the structural function in the RD setting by utilizing only the discontinuity at the cutoff. In

particular, the running variable R is allowed to be correlated with ε and included in g∗. The

estimation procedure in our RD design is also more challenging than IV estimation because

we focus on a local neighborhood of the cutoff. Unlike in the IV setup, where
√

n-consistent

estimators exist [Torgovitsky, 2017], the proposed semiparametric estimator in our RD design is

n−2/5-consistent.

The problem studied by this paper is also related to the broad literature on nonseparable

models. Relevant papers include Matzkin [2003], Hoderlein and Mammen [2007, 2009], Sasaki

[2015], and Su et al. [2019]. The identification there relies on the exogeneity of the treatment,

which is not assumed in RD designs.

1.2 RD Design with a continuous treatment

This section describes the RD model with a continuous treatment, explains the assump-

tions of the model, and discusses the nonparametric identification of the structural function local

to the cutoff.

1.2.1 The model

We study the following causal equation:

Y = g∗(T,R,ε), (1.1)
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where Y is the outcome of interest, T is the treatment, and R is the running variable. The scalar

variable ε represents unobserved causal factors in the outcome equation. We assume all the

random variables are absolutely continuous. The function g∗ is the unknown true structural

function.

The running variable R partly determines the treatment T by the following treatment

choice function:

T =


m0(R,U0),R < r̄,

m1(R,U1),R ≥ r̄,
(1.2)

where r̄ is the cutoff value, and U0 and U1 are scalar variables, representing other factors that are

not observable to an econometrician. For easy reference, they will be referred to as the error terms

hereafter. The important feature of the RD design is that the treatment varies discontinuously

when the running variable crosses the cutoff r̄. The functions m0 and m1 represent respectively

the treatment choice mechanism when R is below and above the cutoff.

It is important to point out that the variables U0,U1,T and R are allowed to be correlated

with the error term ε . If we assume ε to be independent of (T,R), then we can follow Matzkin

[2003] or Hoderlein and Mammen [2007] to identify the structural function. If we assume ε ⊥ R

and R is excluded from m0,m1 and g, then we can follow Torgovitsky [2015] to identify the

structural function by treating the binary variable 1{R ≥ r̄} as the instrument.

We make the following assumptions on the model imposed by (1.1) - (1.2). Let G be

the set of candidate structural functions such that the true g∗ is contained in G . That is, G is

the infinite-dimensional parameter space where the structural function belongs to. Denote the

conditional distribution function by F·|·(·|·), the conditional density function by f·|·(·|·), and the

conditional quantile function by F−1
·|· (·|·).

Assumption 1.1 (Dual Monotonicity).

(i) Every g ∈ G satisfies that for each given T = t and R = r, g is strictly increasing in ε .
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(ii) For each given R = r, m0 is strictly increasing in U0 and m1 is strictly increasing in U1.

Assumption 1.2 (Smoothness).

(i) The functions m0,m1 and every g ∈ G are continuous on their respective domains.

(ii) The conditional quantile functions F−1
U0|R(u|r) and F−1

U1|R(u|r) are strictly increasing in u

and continuous in (u,r).

(iii) The conditional distribution functions Fε|U0,R(e|u,r) and Fε|U1,R(e|u,r) are strictly increas-

ing in e and are continuous in r at r̄.

(iv) The running variable R is absolutely continuous, and its density is strictly positive around

the cutoff r̄.

Assumption 1.3 (Rank Similarity). U0|(ε,R = r̄−) has the same distribution as U1|(ε,R = r̄+).

That is, for every u in the common support of U0 and U1 and every e in the support of ε ,

lim
r↑r̄

fU0|ε,R(u|e,r) = lim
r↓r̄

fU1|ε,R(u|e,r).

Assumption 1.1 restricts the shape of the structural function and the treatment choice

function. Assumption 1.1(i) has implications on the treatment effect heterogeneity. In particular,

it requires the error term ε to be one-dimensional. Such a condition is imposed in Torgovitsky

[2015] and D’Haultfœuille and Février [2015] for the IV setting and Matzkin [2003] for the

setting with an exogenous treatment. This condition is considered a reasonable sacrifice for

deriving a strong result of directly identifying the structural function. Assumption 1.1(ii) imposes

monotonicity on the unobserved heterogeneity in the treatment choice. This condition is similar

to Assumption 1 in Dong et al. [2021]. In fact, the monotonicity assumption in the treatment

choice model is common in the IV literature [e.g., Imbens and Newey, 2009]. From the theoretical

perspective, the entirety of Assumption 1.1 suggests that there is a one-to-one mapping between

(Y,T ) and (ε,U0,U1) for a given value of the running variable R.
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Assumption 1.2 states that except for the discontinuity introduced in (1.2), everything

else is reasonably smooth. In particular, the conditional distribution of ε given (U,R) needs to

be smooth with respect to the running variable R at the cutoff r̄. This condition indicates that the

discontinuity in the outcome Y is purely generated by the discontinuity in the treatment T .

Assumption 1.3 is similar to Assumption 3 in Dong et al. [2021]. It imposes the rank

similarity condition on the potential treatments. In the time zone example, this assumption

requires that the probability for sleep time to stay at a certain rank remains the same regardless

of whether the individual lives just east or west of the time zone boundary. 4

The treatment choice functions (m0,m1) are not identified. Rather than trying to identify

them, it is more convenient to consider a normalization to a quantile representation. By using the

monotonicity of m0 and m1 in Assumption 1.1(ii), we define

U = 1{R < r̄}FU0|R(U0|R)+1{R ≥ r̄}FU1|R(U1|R) = FT |R(T |R), (1.3)

as the conditional rank of T given R.5 Then the treatment choice model in (1.2) can be written as

T = h(R,U) =


h0(R,U),R < r̄,

h1(R,U),R ≥ r̄,

where

h0(r,u) = m0

(
r,F−1

U0|R(u|r)
)

and h1(r,u) = m1

(
r,F−1

U1|R(u|r)
)
.

By using [r0,r1] to denote the support of R, we can write the domains of h0 and h1 respectively

as [r0, r̄]× [0,1] and [r̄,r1]× [0,1].

The following lemma shows that the function h defined above is the conditional quantile

4Notice that Assumption 1.3 is different from the rank similarity condition in the IV quantile regression model
Chernozhukov and Hansen [2005], where the similarity is imposed on the rank of potential outcomes.

5The second equality in Equation (1.3) is proved in Lemma 1.1
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function of T given R, and the quantile representation is a valid normalization in the sense that it

preserves the monotonicity and smoothness conditions. Consequently, the function h (including

both h0 and h1) and the conditional rank U = h−1(R,T ) are identified from the data, where h−1

denotes the inverse of h with respect to the second argument U . In fact, the two functions h0(r̄, ·)

and h1(r̄, ·) are the curves shown in Figure 1.2(b), in which the horizontal axis represents the

conditional rank U .

Lemma 1.1 (Quantile Representation). The following statements hold under Assumptions 1.1 -

1.3:

(i) U ⊥ R, U |R ∼ Unif[0,1], and P(T ≤ h(R,u)|R) = u,u ∈ [0,1].

(ii) For each R = r, h0 and h1 are strictly increasing in U.

(iii) The functions h0 and h1 are continuous.

(iv) The conditional distribution function Fε|U,R(e|u,r) is strictly increasing in e and is contin-

uous in r at r̄, that is,

lim
r↑r̄

Fε|U,R(e|u,r) = lim
r↓r̄

Fε|U,R(e|u,r), for every (e,u). (1.4)

By construction, U is independent of R, but U and ε are possibly correlated even after

conditioning on R. The following assumption states that the support of the unobserved ε does

not vary with U or R. This invariance of the support is not strong since it still allows ε to be

correlated with U or R in any way.

Assumption 1.4 (Support Invariance). Supp(ε|U = u,R = r) does not depend on u or r in the

neighborhood of r̄. This common support is denoted by E .

We use the following notation to denote the left and right limits. Let FY |T,R be the
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conditional distribution function of Y given T and R. We define

F−
Y |T,R(y|t,r) =


FY |T,R(y|t,r), if r < r̄,

limr↑r̄ FY |T,R(y|t,r), if r = r̄.

F+
Y |T,R(y|t,r) =


FY |T,R(y|t,r), if r > r̄,

limr↓r̄ FY |T,R(y|t,r), if r = r̄.

The conditional density functions f−T |R and f+T |R are analogously defined. These left and right

limits exist in view of Assumptions 1.1 and 1.2.

1.2.2 Nonparametric identification

We derive the key identification equation starting from (1.4), which is presented below

for reference:

lim
r↑r̄

Fε|U,R(e|u,r) = lim
r↓r̄

Fε|U,R(e|u,r).

This equation means that the conditional distribution of ε is smooth at the cutoff of the running

variable. Then we recall that Assumption 1.1 (the dual monotonicity condition), together with

Lemma 1.1, establishes a one-to-one mapping between (ε,U) and (Y,T ). Consequently, we can

relate the unobserved distribution of ε to the observed distribution of (Y,T ) as follows:

lim
r↑r̄

Fε|U,R(e|u,r) = F−
Y |T,R(g

∗(h0(r̄,u), r̄,e)|h0(r̄,u), r̄),

lim
r↓r̄

Fε|U,R(e|u,r) = F+
Y |T,R(g

∗(h1(r̄,u), r̄,e)|h1(r̄,u), r̄).

Combing the above equations, we obtain that

F−
Y |T,R(g

∗(h0(r̄,u), r̄,e)|h0(r̄,u), r̄) = F+
Y |T,R(g

∗(h1(r̄,u), r̄,e)|h1(r̄,u), r̄), for every (e,u).
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Given that we can identify F±
Y |T,R and (h0,h1), the above condition imposes a constraint on the

structural function g∗(·, r̄, ·). This constraint helps us identify g∗(·, r̄, ·).

In order to precisely refer to the above condition, we introduce the following definition:

A function g ∈ G is said to satisfy Condition (1.5) if for every e ∈ E and u ∈ [0,1],

F−
Y |T,R(g(h0(r̄,u), r̄,e)|h0(r̄,u), r̄) = F+

Y |T,R(g(h1(r̄,u), r̄,e)|h1(r̄,u), r̄). (1.5)

The previous analysis shows that the true structural function g∗ satisfies Condition (1.5), which

is formally presented in the following lemma.

Lemma 1.2 (Local Control Function). Under Assumptions 1.1 - 1.3, g∗ satisfies Condition (1.5)

with both sides of the equation equal to Fε|U,R(e|u, r̄).

For the true structural function g∗, Condition (1.5) can also be written as

lim
r↑r̄

P(ε|T = h0(r,u),R = r) = lim
r↓r̄

P(ε|T = h1(r,u),R = r).

The above equation leads to another interpretation of Lemma 1.2: U can serve as a control

function local to the cutoff. After fixing the value of U , the variation in the treatment T becomes

locally exogenous. This is because given U and R, the treatment T becomes deterministic. The

only variation left in T around the cutoff is due to the discontinuity in the treatment choice

function. Lemma 1.2 is related to Lemma 1 in Dong et al. [2021], but unlike in that paper, here

we explicitly express the distribution of ε in terms of the observed distribution of (Y,T ) and the

structural function g∗.

From the IV perspective, we can relate Lemma 1.2 to two results in the literature. First,

Lemma 1.2 corresponds to Theorem 1 in Imbens and Newey [2009], where they show that the

normalized unobserved heterogeneity in the first stage is a valid control variable. Second, Lemma

1.2 is similar to Theorem 1 in Torgovitsky [2015] in the sense that it provides a (necessary)
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characterization of the identified set of the structural function.6

Lemma 1.2 can be used to invalid a candidate structural function g in the parameter space

G . Particularly, if

F−
Y |U,R(g(h0(r̄,u), r̄,e)|u, r̄) ̸= F+

Y |U,R(g(h1(r̄,u), r̄,e)|u, r̄), for some e and u,

then g can not be the true structural function. This means that Condition (1.5) is a necessary

condition for the identification of g∗. To make Condition (1.5) also a sufficient condition that

uniquely specifies the true g∗, we further introduce some regularity conditions below.

Assumption 1.5.

(i) (Fuzzy RD). The support of T |R from just below and above the cutoff are intervals denoted

respectively by Supp(h0(r̄,U)) = [t ′0, t
′′
0 ] and Supp(h1(r̄,U)) = [t ′1, t

′′
1 ]. The two supports

are overlapping: [t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ] ̸= /0.7

(ii) (Strong Discontinuity). Local to the cutoff, the functions h0 and h1 intersects and only

intersects finitely many times. That is, the following set is nonempty and finite:

{h0(r̄,u) : h0(r̄,u) = h1(r̄,u) ∈ [t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ],u ∈ [0,1]}.

Assumption 1.5 imposes restrictions on the nature of the discontinuity. Assumption 1.5(i)

requires that the RD design is fuzzy in that there are treatment levels that are taken both below

and above the cutoff. Assumption 1.5(ii) imposes restrictions on the strength of the discontinuity.

It requires that the conditional quantile functions h0(r̄, ·) and h1(r̄, ·) only intersects finitely many

times. The two curves should intersect but not overlap. If the two functions h0(r̄, ·) and h1(r̄, ·)
6The identified set can be defined as the subset of G that contains the functions g that can generate the observed

distribution of (Y,T,R). However, it is rather a detour to formally define such a set because in Section 1.3 we
directly use Condition (1.5) for estimation.

7Infinite intervals are also allowed. For example, Supp(h0(r̄,U)) can be (−∞, t ′′0 ], [t
′
0,∞), or R. We use the

notation [t ′0, t
′′
0 ] to represent all these cases.
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overlaps on some interval, then the structural function is not identified on that interval because

there is no exogenous variation in the treatment inside that interval.8 In the extreme case where

the two curves completely overlap, there is no discontinuity. Figure 1.4 provides two examples

and one counterexample of the strong discontinuity condition.

Figure 1.4. Graphical illustration of the strong discontinuity condition.

Under the strong discontinuity condition stated in Assumption 1.5(ii), the two curves h0(r̄, ·) and h1(r̄, ·) can either
follow the stochastic dominance relationship as in (a) or cross each other for multiple times as in (b). Graph (c) is a
violation of the strong discontinuity condition, where the two curves completely overlap on an interval.

With the above assumptions, we present the main identification result of the paper. The

following theorem shows that Condition (1.5) identifies the true structural function up to a

monotone transformation of the error term ε .

Theorem 1.1 (Nonparametric Identification). Let Assumptions 1.1 - 1.5 hold. If g ∈ G satisfies

Condition (1.5), then there exists a continuous and strictly increasing function λ g such that for

every t ∈ [t ′0, t
′′
0 ]∪ [t ′1, t

′′
1 ],e ∈ E , and u ∈ [0,1], g∗(t, r̄,e) = g(t, r̄,λ g(e)). The specific form of λ g

is given in the proof.

Remark. To prove Theorem 1.1, we take any g ∈ G that satisfies Condition (1.5). Then we apply

the sequencing approach developed in the proof of Theorem 2 in Torgovitsky [2015] to show that

g and g∗ are related by the transformation λ g.
8In that case, it is possible to partially identify the structural function.
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Theorem 1.1 is the best one can achieve in terms of identifying the nonseparable structural

function because the error term is unobserved. Any g ∈ G that satisfies Condition (1.5) is equally

good as the true g∗. The only difference is that the error term is rescaled by the monotone

transformation λ g. Therefore, such a function g can also be seen as a “version” of g∗.

Inspecting the conditions of Theorem 1.1, we can see that no independence assumption

is needed. However, in some theoretical studies of RD designs, a local independence assumption

is imposed on the running variable around the cutoff. For example, Assumption A3(i) in Hahn

et al. [2001] requires (ε,U) to be jointly independent of R conditioning on R near r̄. In the binary

treatment case, Dong [2018a] shows that this local independence condition is not needed to

achieve identification.

Based on the observation made in Lemma 1.2, we can recover the conditional distribution

of ε given U and R = r̄. For any g ∈ G , if g is the true structural function, then the corresponding

conditional distribution of ε is

Fg
ε|U,R(e|u, r̄) = F−

Y |T,R(g(h0(r̄,u), r̄,e)|h0(r̄,u), r̄) = F+
Y |T,R(g(h1(r̄,u), r̄,e)|h1(r̄,u), r̄). (1.6)

In fact, the above conditional distribution Fg
ε|U,R is a transformed version of the true conditional

distribution Fε|U,R, where the transformation is the λ g defined in Theorem 1.1. This means that

the conditional distribution of ε|U,R = r̄ is identified up to the same monotone transformation

as the structural function. To eliminate such inconvenience caused by the error term, we can

integrate out ε and obtain a unique conditional average structural function (CASF):

β
∗(t) = E[g∗(t,r,ε)|R = r̄],

where the expectation is taken with respect to the true conditional distribution of ε given R = r̄.

The following corollary summarizes the above analysis.

Corollary 1.1 (CASF). Let Assumptions 1.1 - 1.5 hold. For any g◦ ∈ G that satisfies Condition
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(1.5), let λ g be the transformation defined in Theorem 1.1. The following two statements hold

true.9

(i) For every e ∈ E and u ∈ [0,1], Fg◦

ε|U,R(λ
g◦(e)|u, r̄) = Fε|U,R(e|u, r̄).

(ii) For any t ∈ [t ′0, t
′′
0 ]∪ [t ′1, t

′′
1 ], the CASF β ∗(t, r̄) is uniquely identified as

β
∗(t) =

∫
g◦(t, r̄,e)dFg◦

ε|U,R(e|u, r̄)du.

The CASF β ∗(t) gives the average outcome the policy-maker can achieve when the

treatment level for individuals with characteristic R = r̄ is set to t. It is worth noting the

difference between the CASF and the local average structural function (LASF) commonly seen

in the LATE literature. The LASF represents the average outcome for the so-called compliers,

an unobservable subpopulation. Therefore, the policy-maker cannot assign treatment to the

compliers even when the LASF is identified. On the other hand, the identified CASF can directly

guide the treatment assignment to the subpopulation with R = r̄. The derivative of the CASF is

not the causal effect specific to any subpopulation. Following the spirit of, for example, Heckman

and Vytlacil [2001], we may call CASF a policy-relevant parameter.

1.3 Semiparametric estimation

In this section, we consider parametrizations of the structural function that maintain

nonlinearity and nonseparability. We propose a semiparametric estimation procedure and derive

its large-sample properties. The estimator is semiparametric because the structural function is

parametrically specified, while the treatment choice model is left nonparametrically specified.

We do not consider a fully nonparametric estimator since such a procedure can be too

data-demanding for practical use, which is especially true for the RD design since the estimation

9Since the conditional distribution of ε given U,R = r̄ is identified. We can also identify other structural
parameters, including the conditional quantile structural function.
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is in the local neighborhood of the cutoff.10

1.3.1 Construction of the estimator

Consider the following parametrization of G local to the cutoff.

Assumption 1.6 (Semiparametric Specification). There is a one-to-one mapping from the class

{(t,e) 7→ g(t, r̄,e) : g ∈ G } of functions to a finite-dimensional parameter space Γ ⊂ RdΓ . We

write such parametrization as {gγ(·, r̄, ·) : γ ∈ Γ}. Assume this parametric model is correctly

specified, that is, there exists γ∗ ∈ Γ such that gγ∗(·, r̄, ·) = g∗(·, r̄, ·).

Assumption 1.7 (Normalization of Γ). For any γ,γ ′ ∈ Γ, if there exists a transformation λ such

that

gγ(·, r̄, ·) = gγ ′(·, r̄,λ (·)),

then γ = γ ′ and λ is the identity transformation.

Assumption 1.7 is a normalization condition that fixes the scale of the error term ε . An

example is provided below to illustrate the parametrization of the structural function. One way to

achieve such normalization is to have some treatment value t̃ such that gγ(t̃, r̄,e) = e, for all γ ∈

Γ.

Example 1.1. Let t̃ ∈ [t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ]. We can specify the structural function by

gγ(T, r̄,ε) = γ1(T − t̃)+ γ2(T − t̃)2 + γ3(T − t̃)ε + ε.

The parameter γ = (γ1,γ2,γ3) is three-dimensional. The function gγ(T, r̄,ε) is strictly increasing

in ε for all γ satisfying P(γ3(T − t̃)+1 > 0) = 1. The parametrization satisfies Assumption 1.7

10From the theoretical perspective, it can be challenging to construct a fully nonparametric estimator. If we follow
the sieve approach, for example, we would need to consider a basis of functions that are strictly increasing in one of
the arguments to accommodate the monotonicity of the structural function, which is a non-trivial task.
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because, by construction, gγ(t̃, r̄,e) = e for all values of γ and e.11 The model is quadratic in T

and nonseparable between T and ε . The effect of T on Y is allowed to be nonlinear and contain

unobserved heterogeneity. The distribution of ε is not parametrized and thus can be very general.

The true parameter γ∗ in the normalized semiparametric model can be identified as

follows. Hereafter, we use h∗ = (h∗0,h
∗
1) to signify the true conditional quantile functions and

h = (h0,h1) a generic pair of conditional quantile functions. Let w(e,u) be a weighting function

defined on R× [0,1]. Define the criterion function as

∥∥Dγ,h
∥∥

w =

(∫ 1

0

∫
R
|Dγ,h(e,u)|2w(e,u)dedu

)1/2

, (1.7)

where Dγ,h(e,u) is defined to be

∫ u

0

(
F−

Y |T,R(gγ(h0(r̄,v), r̄,e)|h0(r̄,v), r̄)−F+
Y |T,R(gγ(h1(r̄,v), r̄,e)|h1(r̄,v), r̄)

)
dv. (1.8)

This criterion function is based on Equation (1.5), which by Lemma 1.2 is a necessary characteri-

zation of the identified set. We take an integral form of Condition (1.5) because it gives a faster

convergence rate of the resulting estimator.

Assumption 1.8 (Weighting function w). The function w is nonnegative, integrates to one, and

is bounded on R× [0,1]. The support of w contains E × [0,1]. The criterion function
∥∥Dγ,h

∥∥
w

defined in (1.7) is finite.

In practice, we may use a weighting function w that is supported on the entire domain

R× [0,1] since E is unknown. For the numerical results in Section 1.4, we use the normal density

function as the weighting w. The following corollary provides the semiparametric identification

result, which is based on the nonparametric identification result in Section 1.2. It shows that the

criterion function, when evaluated at the true nuisance parameter value h∗, is uniquely minimized

by the true γ∗.
11This normalization strategy is presented in Equation (2.5) of Matzkin [2003].
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Corollary 1.2 (Semiparametric Identification). Let Assumptions 1.1 - 1.8 hold. For any γ ∈ Γ

such that γ ̸= γ∗, we have
∥∥Dγ,h∗

∥∥
w >

∥∥Dγ∗,h∗
∥∥

w = 0. In other words, γ∗ is the unique minimizer

of
∥∥Dγ∗,h∗

∥∥
w.

Assume there is an independent and identically distributed (iid) sample (Yi,Ti,Ri)
n
i=1

available. We propose an estimation procedure based on the above semiparametric identifi-

cation result. The idea is that we first estimate the nonparametric components (h0,h1) and

(F−
Y |T,R,F

+
Y |T,R) that appear in the criterion function. Then we construct an empirical version of

the criterion function and take its minimizer to be the estimator.

The estimation procedure of γ is more specifically divided into three steps. The first step

is to estimate the conditional quantile functions h0 and h1. The second step uses local linear

regression (LLR) to estimate the conditional distributions F−
Y |T,R and F+

Y |T,R. It is standard to use

local polynomials in the estimation of RD designs [Porter, 2003, Sun, 2005]. The challenge

here is that, unlike in the classical RD methods where local polynomial is used to estimate the

conditional expectation function of Y given R, here we estimate the conditional distribution of

Y .12 The third step constructs an estimate of the criterion function by replacing the nonparametric

nuisance parameters in (1.8) by their estimated counterparts and then finds the estimate of γ∗ by

minimizing the estimated criterion function. We describe the detail of the estimation procedure

as follows. Denote Y as the range of the outcome Y .

• STEP 1. Estimate the conditional quantile of T given R. Choose estimators ĥ0(r̄, ·) and

ĥ1(r̄, ·) of the corresponding conditional quantile processes, h0(r̄, ·) and h1(r̄, ·). Specific

constructions are provided in Section 1.3.3.

• STEP 2. Estimate the conditional distribution of Y given T,R. Choose two bandwidth

sequences b1 = b1n and b2 = b2n and three kernel functions kY , kT , and kR. Define

KY (y) =
∫ y
−∞ kY (ỹ)dỹ. For each y ∈ Y and t ∈ [t ′0, t

′′
0 ], solve the following minimization

12Local linear estimation of the conditional distribution function can be found in Hansen [2004] and Chapter 2 of
this dissertation.
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problem:

min
a−,a−T ,a

−
R

∑
i:Ri<r̄

(
KY

(
y−Yi

b2

)
−a−−a−T (Ti − t)−a−R (Ri − r̄)

)2

× kT

(
Ti − t

b1

)
kR

(
Ri − r̄

b1

)
.

The minimizer â− is the estimate F̂−
Y |T,R(y|t, r̄). For each y ∈ Y and t ∈ [t ′1, t

′′
1 ], solve the

following minimization problem:

min
a+,a+T ,a

+
R

∑
i:Ri≥r̄

(
KY

(
y−Yi

b2

)
−a+−a+T (Ti − t)−a+R (Ri − r̄)

)2

× kT

(
Ti − t

b1

)
kR

(
Ri − r̄

b1

)
.

The minimizer â+ is the estimate F̂+
Y |T,R(y|t, r̄).

• STEP 3. Construct the empirical version of the criterion function:

∥∥∥D̂
γ,ĥ

∥∥∥
w
=

(∫ 1

0

∫
R
|D̂

γ,ĥ(e,u)|
2w(e,u)dedu

)1/2

,

where D̂
γ,ĥ(e,u) is defined to be

∫ u

0

(
F̂−

Y |T,R(gγ(ĥ0(r̄,v), r̄,e)|ĥ0(r̄,v), r̄)− F̂+
Y |T,R(gγ(ĥ1(r̄,v), r̄,e)|ĥ1(r̄,v), r̄)

)
dv.

The estimator γ̂ is any parameter value in Γ that satisfies

∥∥D̂γ̂,h
∥∥

w ≤ inf
γ∈Γ

∥∥D̂γ,h
∥∥

w +Op (αn) , (1.9)

where αn → 0 is a deterministic sequence specified by Equation (A.3) in Appendix A.2.
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1.3.2 Asymptotic normality

In order to derive the asymptotic distribution of the semiparametric estimator, we consider

the regularity assumptions listed below.

Assumption 1.9 (Distributions of Y,T, and R).

(i) The support of T does not vary with R except when crossing the cutoff r̄, i.e., Supp(T |R =

r) = [t ′0, t
′′
0 ] for r < r̄ and Supp(T |R = r) = [t ′1, t

′′
1 ] for r > r̄. The density functions f−T,R and

f+T,R are bound away from zero.

(ii) The density functions f−T,R and f+T,R are twice continuously differentiable, and ∂ 2

∂ t2 f−T,R(t, r̄)

and ∂ 2

∂ t2 f+T,R(t, r̄) are Lipschitz continuous with respect to t.

(iii) The support of Y , Y , is compact. The conditional distribution functions F−
Y |T,R and F+

Y |T,R

are three-times continuously differentiable over Y × [t ′0, t
′′
0 ]× [r0, r̄] and Y × [t ′1, t

′′
1 ]× [r̄,r1],

respectively.

Assumption 1.10 (Complexity of the Parametric Model). The parametrization {gγ(·, r̄, ·) : γ ∈Γ}

satisfies the following conditions.

(i) The parameter space Γ is compact.

(ii) The class of functions {T 7→ gγ(T +v, r̄,e) : γ ∈ Γ,v ∈ (−1,1),e ∈ E } is finite-dimensional.

(iii) The function gγ(t, r̄,e) is twice continuously differentiable over γ ∈ Γ, t ∈ [t ′0, t
′′
0 ]∪ [t ′1, t

′′
1 ],

and e ∈ E .

(iv) The gradient ∇γDγ∗,h∗(e,u) is a vector of linearly independent functions of (e,u).

Assumption 1.11 (Kernels).

(i) The kernel functions kT and kR are (1) supported on [−1,1], (2) strictly greater than zero

in the interior of the support, (3) of bounded variation, (4) continuously differentiable on

R.
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(ii) The kernel function kY is (1) nonnegative and (2) integrable on R with
∫

kY (y)dy = 1 and

satisfies (3)
∫

ykY (y)dy = 0.

Assumption 1.12 (Bandwidth). The bandwidth b1 and b2 satisfy the following conditions:

(i) b1 ≍ b2.13

(ii) (n logn)b6
1 = o(1).

(iii) nb
13
3 +ε

1 → ∞, for some sufficiently small ε > 0.

Assumption 1.13 (First-step Conditional Quantile Estimators). The estimators ĥ0 and ĥ1 satisfy

the following conditions.

(i) Monotonicity and smoothness: for every n sufficiently large, there exist C > 0 and deter-

ministic and finite partitions Pn
0 and Pn

1 on (0,1) such that

P
(

ĥ0(r̄, ·) /∈ H0(P
n
0 )
)
,P
(

ĥ1(r̄, ·) /∈ H1(P
n
1 )
)
= O

(√
b1

)
,

where

H0(P
n
0 ) ={ function h from [0,1] into [t ′0, t

′′
0 ] : on each element of Pn

0 ,h is strictly

increasing, its inverse h−1 is three-times continuously differentiable,

and (h−1)(3) is Lipschitz continuous },

and H1(P
n
1 ) is defined analogously by replacing Pn

0 with Pn
1 .

13The notation b1 ≍ b2 means that there exists C > 1 such that b1/b2 ∈ [1/C,C].
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(ii) Uniform Bahadur representation:

ĥ0(r̄,u)−h∗0(r̄,u) = b2
1ν0(u)+Op(b3

1)

+
1

nb1

n

∑
i=1

q0(Ti,Ri;u)kQ,0

(
Ri − r̄

b1

)
1{Ri < r̄}+op

(
1/
√

nb1

)
,

ĥ1(r̄,u)−h∗1(r̄,u) = b2
1ν1(u)+Op(b3

1)

+
1

nb1

n

∑
i=1

q1(Ti,Ri;u)kQ,1

(
Ri − r̄

b1

)
1{Ri ≥ r̄}+op

(
1/
√

nb1

)
,

uniformly over u ∈ (0,1). The functions ν0 and ν1 are bounded. The functions q0 and q1

are (1) bounded, (2) centered, that is, E[q0(T,R;u)|T,R] = E[q1(T,R;u)|T,R] = 0, and

(3) does not vary with n. The functions kQ,0 and kQ,1 are bounded.

(iii) Uniform convergence rate:

∥ĥ−h∗∥∞ = sup
u∈(0,1)

|ĥ0(r̄,u)−h∗0(r̄,u)|∨ |ĥ1(r̄,u)−h∗1(r̄,u)|

= Op

(√
logn/(nb1)+b2

1

)
.

A brief discussion of the assumptions is in order. Assumption 1.9 imposes smoothness

restrictions on the joint distribution of (Y,T,R). In the previous section, the identification

result only requires continuity of the relevant functions. For estimation, we need higher-order

smoothness regarding the distribution functions. Assumption 1.10 imposes restrictions on the

parametric model of the structural function. Part (ii) restricts the complexity of the model. Part

(iii) imposes high-order smoothness on the structural function. Part (iv) is similar to Assumption

D4 in Torgovitsky [2017] and requires that ∇γDγ∗,h∗ to carry information about each component

of the parameter.

Assumption 1.11 imposes restrictions on the kernel functions kT , kR, and kY . The

differentiability is needed to prove a stochastic equicontinuity condition. Assumption 1.12
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restricts that b1 and b2 are of the same asymptotic order, which is slightly faster than n−1/6 and

slightly slower than n−3/13. This assumption is not restrictive and allows for the asymptotic

mean squared error (AMSE) optimal bandwidth as well as undersmoothing.

Assumption 1.13 imposes high-level restrictions on the first-stage nonparametric condi-

tional quantile estimators. Part (i) assumes that the quantile estimators are piece-wise monotonic

and smooth with a high probability. Part (ii) and (iii) give the uniform Bahadur representation

and the uniform convergence rate, which are fairly standard in the quantile estimation literature.

In Section 1.3.3, we discuss a specific nonparametric quantile estimator that satisfies Assumption

1.13.

Theorem 1.2 (Asymptotic Distribution of the Semiparametric Estimator). Let Assumptions 1.1 -

1.13 hold. Then∥γ̂ − γ∗∥2 = Op(b2
1 +1/

√
nb1) and

(√
nb1(Σ−+Σ+)

−1/2
)
(∆(γ̂ − γ

∗)−b2
1(B−−B+))

d→ N(0, IIIdΓ
),

where IdΓ
is the dΓ-dimensional identity matrix. The exact forms of ∆, B−, B+, Σ− and Σ+ are

given in Equations (A.11), (A.12), (A.13), (A.14) and (A.15) in Appendix A.2, respectively.

Remark. The convergence rate of γ̂ is b2
1 +1/

√
nb1, which is equal to n−2/5 when b1 ≍ n−1/5.

This rate is the same as the one obtained in the classical RD design with a binary treatment

variable [Hahn et al., 2001]. Having a continuous treatment does not slow down the convergence

rate of the estimator in this case. This is due to the integral smoothing in the definition of the

criterion function Dγ,h in (1.8).

Remark. The proof of Theorem 1.2 follows the general steps of proving asymptotic normality

of semiparametric estimators as in, for example, Torgovitsky [2017] and Chen et al. [2003].

The main difficulty is that the usual stochastic equicontinuity condition is not sharp because

the criterion function is nonparametrically estimated. More specifically, the consistency of γ̂ by

itself is not enough to eliminate the estimation errors asymptotically. To overcome this issue,
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we first use the empirical process theory to derive a uniform convergence rate for the estimated

criterion function, which gives an initial bound on the convergence rate of γ̂ . A sharper stochastic

equicontinuity result is then derived based on this initial bound together with more applications

of the empirical process theory. This sharper stochastic equicontinuity result helps demonstrate

that the usual linearization of the criterion function is valid. See the proof in Appendix A.2 for

details.

Once the asymptotic normal distribution of the estimator γ̂ is established, we can conduct

inference for γ∗. Theorem 1.2 together with the undersmoothing condition that nb5
1 = o(1) gives

that

√
nb1(γ̂ − γ

∗)
d→ N(0,∆−1(Σ−+Σ+)∆

−1).

A linear null hypothesis regarding γ can be written as Hγ = η , where η ∈Rdη and H is a dη ×dγ

full-rank matrix. Consider the test statistic

nb1(γ̂ − γ
∗)′
(

H∆̂
−1(Σ̂−+ Σ̂+)∆̂

−1H ′
)−1

(γ̂ − γ
∗),

where ∆̂, Σ̂−, and Σ̂+ are consistent estimators of ∆, Σ−, and Σ+, respectively. By Slutsky’s

theorem, the above test statistic converges in distribution to the χ2 distribution with dη degrees

of freedom. In Appendix A.2, we discuss how to construct consistent estimators for ∆, Σ−, and

Σ+.

1.3.3 First-step nonparametric quantile estimators

This section discusses how to construct nonparametric conditional quantile estimators

that satisfy Assumption 1.13. Consider the following two-step estimation procedure introduced

by Qu and Yoon [2015]. Define ρu(t) = t(u−1{t < 0}).

• STEP 1. Choose a bandwidth sequence b3 = b3n = o(1) and a kernel function kFS.
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Partition the unit interval (0,1) into a grid of equally spaced points {u1, · · · ,uJn}, where

Jn/(nb3)
1/4 → ∞. Solve the following optimization problem:

min
{h j,h′j}

Jn
j=1

Jn

∑
j=1

n

∑
i=1

ρu j

(
Ti −h j −h′j(Ri − r̄)

)
kFS

(
Ri − r̄

b3

)
1{Ri < r̄}. (1.10)

Denote the minimizers by (ĥ0(r̄,u1), · · · , ĥ0(r̄,uJn)).

• STEP 2. Let u0 = 0 and uJn+1 = 1. Let ĥ0(r̄,u0) = mini:Ri<r̄ Ti and ĥ0(r̄,uJn+1) =

maxi:Ri<r̄ Ti. Linearly interpolate between the estimates to obtain an estimate for the

entire quantile process. That is, for any u ∈ (u j,u j+1), define

ĥ0(r̄,u) =
u j+1 −u
u j+1 −u j

ĥ0(r̄,u j)+
u−u j

u j+1 −u j
ĥ0(r̄,u j+1).

The estimator ĥ1(r̄, ·) can be analogously defined by using the data with Ri ≥ r̄.14 We can verify

Assumption 1.13 for the estimator constructed above. Denote

ΩQ,0 =
∫
(1,x)(1,x)′1{x < 0}kFS(x)dx,

ΩQ,1 =
∫
(1,x)(1,x)′1{x ≥ 0}kFS(x)dx.

Proposition 1.1. Let Assumptions 1.2(iv) and 1.9(i)-(ii) hold. Assume that the third-order

derivatives ∂ 3

∂R3 h∗0(r,u) and ∂ 3

∂R3 h∗1(r,u) are Lipschitz continuous respectively on [r0, r̄]× [0,1]

and [r̄,r1]× [0,1]. Assume that the bandwidth b3 = cb1 for some constant c > 0. Assume that the

kernel kFS is nonnegative, of bounded variation, compactly supported, having finite first-order

derivatives and satisfying

∫
kFS(x)dx = 1,

∫
xkFS(x)dx = 0,

∫
x2kFS(x)dx < ∞.

14There are three estimators of conditional quantile process in Qu and Yoon [2015]. The estimator explained
here is their second one, denoted by α̂∗ in that paper. Their third estimator imposes a monotonicity constrain to the
minimization problem (1.10).
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Then the estimators ĥ0(r̄, ·) and ĥ1(r̄, ·) described above satisfy Assumption 1.13. The specific

forms of ν0 and ν1 are

ν0(u) =
c2

2
∂ 2

∂ r2 h∗0(r̄,u)ι
′
Ω

−1
Q,0

∫
x2(1,x)′kFS(x)1{x < 0}dx,

ν1(u) =
c2

2
∂ 2

∂ r2 h∗1(r̄,u)ι
′
Ω

−1
Q,1

∫
x2(1,x)′kFS(x)1{x ≥ 0}dx.

The specific forms of kQ,0 and kQ,1 are

kQ, j(x) = ι
′
Ω

−1
Q, j(1,x/c)′kFS(x/c)/c, j = 0,1.

The functions q0 and q1 are

q0(T,R;u) = (u−1{T ≤ h∗0(r̄,u)})/( fR(r̄) f−T |R(h
∗
0(r̄,u)|r̄)),

q1(T,R;u) = (u−1{T ≤ h∗1(r̄,u)})/( fR(r̄) f+T |R(h
∗
1(r̄,u)|r̄)),

which take the form of an influence function for quantiles.

Other quantile estimation methods are also available. For example, one can consider the

generic framework proposed by Chernozhukov et al. [2010] for rearrangement. In particular, they

show that the rearrangement of a preliminary estimated quantile process delivers a monotonic

estimator that preserves the asymptotic properties. This result gives a different way to generate

estimators that satisfy Assumption 1.13. We can start with an estimator with desired asymptotic

properties that give rise to Assumption 1.13(ii) and (iii), and then apply the rearrangement

procedure. The resulting estimator would be monotonic on the entire domain, and partitioning is

unnecessary.
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1.4 Numerical results

This section presents the empirical study and the simulation results. The empirical study

shows that the semiparametric estimator is considerably better than the simple TSLS estimator

in discovering quantitative information regarding the structural function. The simulation studies

show that the semiparametric procedure can accurately estimate the parameters with moderate

sample size.15

1.4.1 Empirical study

In this empirical study, we examine the causal effect of sleep time on health status by

exploiting the discontinuity in the timing of natural light at time zone boundaries. The unit

of observation is the individual in the American Time Use Survey (ATUS). The outcome Y

is the individual’s health status measured by the body-mass index (BMI).16 The treatment T

is the sleep time. The running variable R is the longitudinal distance to the nearest time zone

boundary, with cutoff r̄ = 0 denoting the time zone border. As explained in the introduction,

the identification is based on the exogenous variation in the sleep time around the time zone

boundary. This exogenous variation is due to the difference in the timing of natural light on each

side of the time zone boundary.

Many studies in the medical literature examine the effect of sleep time on overweight

issues. See Beccuti and Pannain [2011] and the references therein. These studies typically use

survey or laboratory data. This problem is first studied by using the RD design in Giuntella

and Mazzonna [2019].17 The relevant outcome variable they use is a binary indicator of the

obesity (or overweight) status indicating whether the BMI is above some threshold. They use

the TSLS procedure to estimate the Wald ratio across the time zone boundary. We consider two

15Replication files for the empirical and simulation studies are available from the author upon request.
16BMI is a person’s weight in kilograms divided by the square of height in meters. The Centers for Disease

Control and Prevention define overweight as BMI ¿ 25 and obesity as BMI ¿ 30.
17Giuntella and Mazzonna [2019] study many health and economics-related issues. Here we only mention the

relevant ones.
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improvements based on their work. First, we directly use BMI as the outcome variable, providing

a more quantitative measure of the health status. Second, we use the proposed semiparametric

estimator to estimate a nonlinear structural function. Previous medical studies have provided

evidence of the nonlinearity of the structural function. For example, Hairston et al. [2010] show

that both undersleeping and oversleeping lead to an increase in BMI while sleeping around 8

hours leads to a more healthy BMI level.

The data for this empirical study is collected from IPUMS CPS [Flood et al., 2020] and

IPUMS ATUS [Hofferth et al., 2020] during the periods 2006 - 2008 and 2014 - 2016. By linking

these datasets, we can locate the county where the individual lives and then use the county’s

centroid as the location of the individual. We focus on counties near the time zone boundary

between the Eastern and Central time zone. The counties are divided into two regions based on

their latitude. We estimate the model separately for each region.

The estimated marginal effects of sleep on BMI from the semiparametric estimator and

the TSLS estimator are shown in Figure 1.5. Several interesting findings are observed based

on the semiparametric estimates. First, the marginal effects are increasing and increase from

negative to positive. This lends some support to the previous argument that the structural function

is nonlinear and neither sleeping too little nor too much is preferable. Second, we can determine

the optimal (in terms of BMI) sleep time by finding the zero of the marginal effect curve. In both

cases, the optimal sleep time is estimated to be between 7 and 8 hours, which also aligns with the

findings in previous medical studies. Third, the results from the two regions are similar, meaning

that the variation across different latitudes is small.

From Figure 1.5, we can also see that the TSLS estimates are not capable of demonstrating

the above results. First, the TSLS procedure only provides a constant estimate of the marginal

effect across all levels of sleep time. This means an extra hour of sleep would lead to the same

effect on health regardless of the person’s current sleep time, which is inappropriate in this

setting. Moreover, we cannot estimate the optimal sleep time based on the linear structural

function. Second, the magnitude of the TSLS estimates is small. This is because the TSLS
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Figure 1.5. Estimated marginal effects of sleep time on BMI (kg/m2).

The plots show the estimated marginal effects based on the semiparametric and the TSLS estimator. Graph (a) is
computed based on counties with latitude ¡ 37. Graph (a) is computed based on counties with latitude ¿ 37. We
can see that the marginal effects are increasing, indicating a nonlinear (U-shaped) structural function. The optimal
sleep time computed as the zero of the marginal effect curve is between 7 and 8 hours. However, the marginal effect
estimated from the TSLS procedure is constant across different sleep times. These estimates are small in magnitude
and less informative for the researcher.

provides a weighted average of the marginal effects across the entire range of sleep time. By

averaging the negative and positive effects, the TSLS delivers an estimate attenuated toward zero,

which is not informative for the researcher.18

1.4.2 Simulations

We use simulation studies to investigate the performance of the proposed semiparametric

method and compare it with the performance of the TSLS estimator. The data generating

process (DGP) for these simulations was chosen to roughly approximate the ATUS data used

in the empirical study. Let marginal distributions of U and ε be given by FU = Unif(0,1)

and Fε = Beta(2,2), respectively. Two marginal distributions for R are considered, Unif(0,1)

and N(0,1). The joint distribution of (R,ε,U) be characterized by the Gaussian copula with

18Giuntella and Mazzonna [2019] find a more significant effect of sleep time on obesity. There are two possible
reasons: they consider the binary indicator of obesity, and they include more control variables in the regression.
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correlation structure corr(R,U) = 0, corr(ε,R) = ρR, and corr(ε,U) = ρU . The treatment choice

model is given by h∗0(r,u) = r+2sin(πu/2) and h∗1(r,u) = r+2u3. The structural function is

given by

gγ(T,R,ε) = γ1(T −0.5)+ γ2(T 2 −0.52)+ γ3(T −0.5)ε + ε +R.

The true γ∗ is taken to be (1,1,1).

Further implementation details are described below. Construct a kernel function k that is

an even function given by

k(x) =


2x3 −3x2 +1, if x ∈ [0,1],

0, if x > 1.

We can verify that k is continuously differentiable on the real line and compactly supported on

[0,1]. Within the interior of its support, k is strictly positive. We use this function k to be the

kernels kT , kR, kY , and kFS in the estimation. The bandwidth is chosen to be b1 = b2 = b3 =

2n−1/5. The weighting function w(e,u) is chosen to be constant in u and equal to the standard

normal density function with respect to e.

Table 1.1 contains the simulation results of the performance of the semiparametric

estimator for different choices of the marginal distribution of R, the correlation parameters

(ρU ,ρR) and the sample size. In each case, the number of replications is set at 500. We can

see that the estimator performs well with a moderate sample size (n = 1000). The marginal

distribution of R does not have a large impact on the performance. When the sample size is small,

larger values of ρR or ρU can lead to poorer performance of the estimator. The plausible reason

is that larger values of the correlation parameters would lead to more severe endogeneity issues

in finite samples. When the sample size becomes large, the performance of the estimator does

not vary significantly with the choices of (ρR,ρU).
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Table 1.1. Performance of the semiparametric estimator.

Dist. R ρU ρR Param n = 500 n = 1000 n = 1500

bias sd mse bias sd mse bias sd mse

U(0,1)

.3

.3
γ1 -.257 .206 .108 -.233 .134 .072 -.219 .119 .062
γ2 .038 .153 .025 .062 .098 .013 .068 .081 .011
γ3 .172 .139 .049 .158 .091 .033 .154 .073 .029

.5
γ1 -.260 .464 .283 -.231 .134 .071 -.215 .116 .060
γ2 .027 .514 .265 .053 .097 .012 .060 .080 .010
γ3 .178 .168 .060 .159 .097 .035 .155 .076 .030

.5

.3
γ1 -.256 .199 .105 -.225 .129 .067 -.210 .111 .056
γ2 .039 .157 .026 .061 .098 .013 .068 .078 .011
γ3 .189 .140 .055 .171 .086 .037 .163 .070 .031

.5
γ1 -.248 .456 .269 -.217 .125 .063 -.202 .104 .052
γ2 .015 .512 .262 .044 .095 .011 .052 .075 .008
γ3 .222 .419 .225 .178 .100 .042 .171 .076 .035

N(0,1)

.3

.3
γ1 -.224 .479 .280 -.228 .156 .076 -.216 .136 .065
γ2 .006 .527 .278 .059 .114 .016 .067 .093 .013
γ3 .152 .170 .052 .152 .105 .034 .148 .085 .029

.5
γ1 -.254 .362 .196 -.224 .153 .074 -.212 .124 .060
γ2 .030 .268 .073 .048 .112 .015 .058 .091 .012
γ3 .167 .178 .060 .152 .113 .036 .149 .086 .030

.5

.3
γ1 -.243 .233 .113 -.221 .149 .071 -.209 .127 .060
γ2 .027 .185 .035 .059 .113 .016 .069 .090 .013
γ3 .176 .172 .061 .163 .102 .037 .157 .082 .031

.5
γ1 -.230 .500 .303 -.210 .144 .065 -.198 .118 .053
γ2 -.012 .619 .383 .037 .113 .014 .049 .086 .010
γ3 .193 .248 .099 .172 .116 .043 .167 .088 .036

The structural function follows the three-parameter specification in Example 1.1. The number of replications
is 500. The marginal distribution of R is chosen to be the uniform distribution on [0,1] or the standard normal
distribution. The two correlation parameters ρR = corr(ε,R) and ρU = corr(ε,U) are chosen from {0.3,0.5}. The
results demonstrate the following points. First, the semiparametric estimator performs well with a moderate sample
size of 1000. Second, the performance of the estimator is not affected by The marginal distribution of R. Third,
when the sample size is as large as 1000, the performance of the estimator does not vary significantly with the
choices of (ρR,ρU ).
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It is also of interest to compare the semiparametric estimator with the TSLS estimator.

Directly comparing the two estimators can be difficult since they are of different dimensions

and converge to different limits. Instead, we can compare their performance in estimating

the marginal effect. For the structural function gγ(t, r̄,e) = γ1t + γ2t2 + γ3te+ e, the marginal

effect of the treatment on the outcome is ∂

∂ t gγ(t, r̄,e) = γ1 +2γ2t + γ3e, which takes on different

values for different treatment and outcome levels. For a given treatment level t, we can use the

semiparametric estimator to obtain an estimate γ̂1 +2γ̂2t + γ̂3e of the marginal effect. However,

a TSLS procedure would deliver a scalar estimate that is a mixture of marginal effects across

different treatment and outcome levels. Figure 1.6 shows that with a nonlinear specification, the

semiparametric estimator outperforms the TSLS estimator. We compare the two estimates of the

marginal effect at four quantile levels of the treatment: 20%, 40%, 60%, and 80%. The simulated

distribution of the semiparametric estimator is correctly centered, while the TSLS estimator

incurs a large bias. Figure 1.7 shows similar findings with a fully nonlinear and nonseparable

specification, where we compare the two estimates at four levels of e: 0.2,0.4,0.6,0.8.

Next, we compare the semiparametric estimator with the TSLS estimator when the

structural function g is linear. This is achieved by imposing γ2 = γ3 = 0. The remaining slope

coefficient γ1 is equal to the marginal effect. In this case, the TSLS estimator is consistent for

the coefficient γ1. However, the identification of the TSLS estimator is based solely on the

difference between the two means. If the two distributions corresponding to h0 and h1 have the

same mean, then the TSLS procedure suffers from weak identification issues. In contrast, the

identification of the semiparametric estimator γ̂ is based on the entire difference between h0 and

h1. As a result, the semiparametric estimator continues to work under the linear specification

even if the estimand of the TSLS estimator is weakly identified. For the simulation, we let h0 be

the quantile function of Beta(0.1,0.1), and h1 be the quantile function of Beta(10,10). These

two distributions are significantly different, but they have the same mean, which is equal to 0.5.

Figure 1.8 shows that, in this case, the semiparametric estimator outperforms the TSLS estimator

in estimating the marginal effect.
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Figure 1.6. Marginal effects comparison with a nonlinear structural function.

Kernel density estimates of estimated marginal effect by the semiparametric and TSLS estimators (minus the true
marginal effect) based on 500 replications. The sample size is 1000. The true structural function is specified to
be g(t, r̄,e) = t/2+ t2 + e, where the marginal effect is 1/2+2t. The graphs show the estimation results of four
quantile levels of the treatment: 20%, 40%, 60%, and 80%. The distribution of the semiparametric estimator
is correctly centered while the TSLS estimator incurs a large bias. The TSLS estimator gives an approximately
unbiased estimate of the marginal effect only around the 60% quantile level.
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Figure 1.7. Marginal effects comparison with a nonseparable structural function.

Kernel density estimates of estimated marginal effect by the semiparametric and TSLS estimators (minus the true
marginal effect) based on 500 replications. The sample size is 1000. The true structural function is specified to
be g(t, r̄,e) = t/2+ t2 +2te+ e, where the marginal effect is 1/2+2t +2e. The treatment level is specified to be
the median. The graphs show the estimation results of four levels of e: 0.2, 0.4, 0.6, 0.8. The distribution of the
semiparametric estimator is correctly centered while the TSLS estimator incurs a large bias. The TSLS estimator
gives an unbiased estimate of the marginal effect only around e = 0.6.
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Figure 1.8. Semiparametric and TSLS estimators when the structural function is linear.

Kernel density estimates of the semiparametric and TSLS estimators (minus the true γ∗ = 1) based on 500
replications. In the DGP, h0 is equal to the quantile function of Beta(0.1,0.1), and h1 is equal to the quantile
function of Beta(10,10). These two distributions are significantly different, but they have the same mean. In this
case, the semiparametric estimator outperforms the TSLS estimator because the latter is weakly identified.
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1.5 Conclusion

In this study, we have examined the identification and estimation of the structural function

in an RD design with a continuous treatment variable. We have established the nonparametric

identification result and proposed a semiparametric estimator for the possibly nonlinear and non-

separable structural function. The estimator is proven to be consistent and asymptotically normal.

The empirical study and simulation results demonstrate the advantage of the semiparametric

estimator compared to the TSLS estimator.

There are two promising ways to extend the results in this paper in the future. First,

we can consider extrapolating the identification result away from the cutoff. The extrapolation

can be done by identifying the derivative of the structural function with respect to the running

variable at the cutoff as in Dong and Lewbel [2015]. Second, we can apply the methodology

developed in this paper to the regression kink design model studied by Card et al. [2015], Dong

[2018b], where the treatment choice function exhibits a kink instead of a discontinuity at the

cutoff.
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Chapter 2

Uniform Convergence Results for the Lo-
cal Linear Regression Estimation of the
Conditional Distribution

2.1 Introduction

This paper studies the nonparametric estimation of the conditional distribution function.

The analysis concerns a random variable Y ∈ R and a random vector of covariates X ∈ Rd . The

conditional distribution function of Y given X = x is denoted by F(·|x), that is,

F(y|x) = P(Y ≤ y|X = x),y ∈ R.

When the conditional distribution function F(·|·) is assumed to be smooth, it is natural to consider

using the local linear regression (LLR) method to estimate F .

The main subject of this study is the uniform convergence of the LLR estimator with

respect to both y and x. In particular, we derive the uniform bias expansion, characterize the

uniform convergence rate, and present the uniform asymptotic linear representation of the

estimator. As explained in, for example, Hansen [2008] and Kong et al. [2010], these uniform

results are often useful for semiparametric estimation based on nonparametrically estimated

components.

The estimation of the conditional distribution is an important area of research. Hansen
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[2004] studies the asymptotic properties of both the Nadaraya-Watson (local constant) estimator

and the LLR estimator, and obtains point-wise convergence results. It is well-known that the

LLR estimator has the better boundary properties of the two, but unlike the Nadaraya-Watson

estimator, the LLR estimator is not guaranteed to be a proper distribution function.1 Recently,

Das and Politis [2020] propose a way to correct the LLR estimator. The conditional distribution

estimation is also useful for estimating conditional quantiles. For example, Yu [1997] and Yu

and Jones [1998] first estimate the conditional distribution function and then invert it to obtain

the conditional quantile function.

The local polynomial estimators have been studied extensively, but the uniform con-

vergence results for the estimation of F are new to the literature. In the general setup of local

polynomial estimators, there is only one regressand, namely, Y . However, in the conditional

distribution estimation, there is a class of regressands, namely, 1{Y ≤ y},y ∈ R. For example,

Masry [1996] establishes the uniform convergence rate for general local polynomial estimators,

but the uniformity is with respect to the values of the regressors. Therefore, their results can only

be applied to an estimate of F(y|·) for a fixed y ∈ R. For the same reason, the results in Kong

et al. [2010] cannot be used to provide a uniform asymptotic linear representation for y ∈ R. Our

paper aims to solve these issues and prove that under suitable conditions, the desired results are

uniform with respect to both y and x. We make use of the recent discovery by Fan and Guerre

[2016] on the support of the covariates, ensuring that the uniform results are valid over the entire

support.

The second contribution of the paper is the presentation of a novel way of proving the

uniform convergence rate via empirical process theory. This theory was developed by Giné and

Guillou [2001] and Giné and Guillou [2002] and supports the uniform almost sure convergence of

the kernel density estimator. In this paper, we simplify their method and make it more accessible

to users who are only concerned with the notion of uniform convergence in probability.

1To solve this problem Hall et al. [1999] propose a weighted Nadaraya-Watson estimator that has the same
asymptotic distribution as the LLR estimator, but these weights require extensive computation.
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The remaining parts of the paper are organized as follows. Section 2.2 introduces the

statistical model and the assumptions. Section 2.3 establishes the uniform bias expansion result.

Section 2.4 introduces empirical process theory and uses it to prove the uniform convergence

rate. Section 2.5 presents the uniform asymptotic linear representation and provides a simple

example to illustrate the result. The proofs are contained in the Supplementary Material.

2.2 Model and Assumptions

Let {(Yi,Xi),1 ≤ i ≤ n} be a random sample of (Y,X). The estimation procedure is

described as follows. Let w and k be two kernel functions and K(v) =
∫ v
−∞

k(u)du. Let h1 = h1n =

o(1) and h2 = h2n = o(1) be two scalar sequences of bandwidths. Let rrr(u) = (1,u⊤)⊤,u ∈ Rd

and eee0 = (1,0, · · · ,0) be the first (d + 1)-dimensional unit vector. The proposed estimator is

F̂(y|x) = eee⊤0 β̂ββ (y,x,h1,h2), where

β̂ββ (y,x,h1,h2) =
(

β̂ββ 0(y,x,h1,h2), β̂ββ 1(y,x,h1,h2), · · · , β̂ββ d(y,x,h1,h2)
)⊤

= argmin
βββ∈Rd+1

n

∑
i=1

(
K
(

y−Yi

h2

)
− rrr(Xi − x)⊤βββ

)2

w
(

Xi − x
h1

)
. (2.1)

Let H1 be the (d + 1)× (d + 1) diagonal matrix with diagonal elements: (1,h1, · · · ,h1). The

first-order condition of the above minimization problem gives

H1β̂ββ (y,x,h1,h2) = Ξ̂(x,h1)
−1

υ̂υυ(y,x,h1,h2), (2.2)

where

Ξ̂(x,h1) =
1

nhd
1

n

∑
i=1

rrr
(

Xi − x
h1

)
rrr
(

Xi − x
h1

)⊤
w
(

Xi − x
h1

)
,

υ̂υυ(y,x,h1,h2) =
1

nhd
1

n

∑
i=1

rrr
(

Xi − x
h1

)
K
(

y−Yi

h2

)
w
(

Xi − x
h1

)
.
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In the construction of the estimator, we do not use the indicator 1{Yi ≤ y}. Instead, we

use the smoothed version K
(
(y−Yi)/h2

)
, which requires the selection of another bandwidth

h2 and additional smoothness assumptions on the conditional distribution function. However,

there are several advantages to using the smoothed version. First, the estimator constructed

from the indicators is not smooth in y. When we believe that the true distribution function is

smooth, it is customary to use the smoothed estimator. Second, from the asymptotic perspective,

the indicator 1{Yi ≤ y} can be considered to be the limiting case of K
(
(y−Yi)/h2

)
for h2 = 0.

As Hansen [2004] shows, the asymptotic mean squared error is strictly decreasing for h2 = 0;

hence, there are efficiency gains from smoothing. Third, as the simulation results in Yu [1997]

and Yu and Jones [1998] demonstrate, the estimates are not very sensitive to the value of h2.

Lastly, as we show in Section 2.5, the smoothed estimator exhibits a stochastic equicontinuity

condition in y. This condition is particularly useful when the conditional distribution estimation

is an intermediate step in a semiparametric estimation procedure. For example, Chen et al.

[2003] provide results on using the stochastic equicontinuity condition to derive the asymptotic

distribution of two-step semiparametric estimators.

The following assumptions are maintained throughout the paper.

Assumption X (Distribution of X). The support of X, denoted by X , is convex and compact.

The marginal density fX is bounded away from zero on X . The restriction of fX to X is twice

continuously differentiable. There exist λ0,λ1 ∈ (0,1] such that for any x ∈X and all ε ∈ (0,λ0],

there is x⊤ ∈ X satisfying B(x⊤,λ1ε)⊂ B(x,ε)∩X , where B(x,ε) denotes the ball centered

at x with radius ε .

Assumption Y (Conditional distribution of Y |X). The conditional distribution function F(y|x)

restricted to R×X is twice continuously differentiable in y and x. Moreover, this second-order

derivative of F restricted to R×X is uniformly continuous.

Assumption K (Kernel functions).
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(i) The kernel function w is a product kernel, that is, w(u) = w1(u1)w2(u2) · · ·wd(ud). Each

wℓ (1) is a symmetric density function with compact support [−1,1]; (2) has its second

moment normalized to one, that is,
∫

u2
ℓwℓ(uℓ)duℓ = 1; (3) is positive in the interior of the

support (−1,1); and (4) is of bounded variation.

(ii) The kernel function k (1) is a symmetric density function with a compact support and (2)

has its second moment normalized to one, that is,
∫

v2k(v)dv = 1.

A brief discussion of the above assumptions is in order. Assumption X is introduced

by Fan and Guerre [2016] as a regularity condition on the support X . It ensures that there

are sufficient observations around every estimation location, including the boundary points.

Assumption Y imposes smoothness conditions on the conditional distribution function F . Under

this assumption, the Hessian matrix of F is uniformly continuous on the compact support

supp(Y,X). Assumption K contains standard conditions on the kernel functions k and w. The

bounded variation condition is imposed for the application of empirical process theory.

2.3 Uniform Bias Expansion

We denote the true value of the conditional distribution function and its derivative with

respect to x as

βββ
∗(y,x) =

(
βββ
∗
0(y,x),βββ

∗
1(y,x), · · · ,βββ

∗
d(y,x)

)⊤
=
(

F(y|x),∇xF(y|x)⊤
)⊤

,

where ∇xF(y|x) =
(

∂

∂x1
F(y|x), · · · , ∂

∂xd
F(y|x)

)⊤
is the gradient of F(y|x) with respect to x. A

convenient way to analyze the estimator β̂ββ (y,x,h1,h2) is to consider it as an estimator of the
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pseudo-true value defined by

β̄ββ (y,x,h1,h2) =
(

β̄ββ 0(y,x,h1,h2), β̄ββ 1(y,x,h1,h2), · · · , β̄ββ d(y,x,h1,h2)
)⊤

= argmin
βββ∈Rd+1

E

(K
(

y−Y
h2

)
− rrr(X − x)⊤βββ

)2

w
(

X − x
h1

) . (2.3)

This pseudo-true value β̄ββ is deterministic and converges to the true value βββ
∗ as n → ∞.2 We can

break the asymptotic analysis of β̂ββ (y,x,h1,h2)−βββ
∗(y,x) into two parts:

β̂ββ (y,x,h1,h2)−βββ
∗(y,x) = β̂ββ (y,x,h1,h2)− β̄ββ (y,x,h1,h2)︸ ︷︷ ︸

stochastic term

+ β̄ββ (y,x,h1,h2)−βββ
∗(y,x)︸ ︷︷ ︸

bias term

.

In this section, we study the bias term, which is the difference between the pseudo-true value and

the true value. The first-order condition of (2.3) gives an explicit expression of the pseudo-true

value: H1β̄ββ (y,x,h1,h2) = Ξ(x,h1)
−1υυυ(y,x,h1,h2), where

Ξ(x,h1) =
1
hd

1
E

[
rrr
(

X − x
h1

)
rrr
(

X − x
h1

)⊤
w
(

X − x
h1

)]
,

υυυ(y,x,h1,h2) =
1
hd

1
E

[
rrr
(

X − x
h1

)
K
(

y−Y
h2

)
w
(

X − x
h1

)]
.

Define Ω(x,h1) =
∫

rrr(u)rrr(u)⊤w(u)1{x+ h1u ∈ X }du. The following lemma shows that the

matrices Ξ(x,h1) and Ω(x,h1) are always bounded and invertible.

Lemma 2.1. Under Assumptions X and K, there exists C > 0 such that the eigenvalues of Ξ(x,h1)

and Ω(x,h1) are in [1/C,C] for all x ∈ X and h1 ≥ 0 small enough.

2The terminology “pseudo-true” is adopted from Fan and Guerre [2016].
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Theorem 2.1. Let Assumptions X, Y, and K hold. Then

H1

(
β̄ββ (y,x)−βββ

∗(y,x)
)

=
h2

1
2

Ω(x,h1)
−1

d

∑
ℓ,ℓ′=1

∂ 2

∂xℓ∂xℓ′
F(y|x)

∫
rrr(u)uℓuℓ′w(u)1{x+h1u ∈ X }du

+
h2

2
2

Ω(x,h1)
−1 ∂ 2

∂y2 F(y|x)
∫

rrr(u)w(u)1{x+h1u ∈ X }du+o(h2
1 +h2

2), (2.4)

uniformly over y ∈ R and x ∈ X . In particular, we have

β̄ββ 0(y,x)−βββ
∗
0(y,x) =

h2
1

2

d

∑
ℓ=1

∂ 2

∂x2
ℓ

F(y|x)+
h2

2
2

∂ 2

∂y2 F(y|x)+o(h2
1 +h2

2), (2.5)

uniformly over y ∈R and x ∈ X̊h1 , where X̊h1 = {x ∈X : x±h1 = (x1±h1, · · · ,xd ±h1)∈X }

denotes the set of interior points with respect to the bandwidth h1.

The novelty of Theorem 2.1 is that it provides a uniform bias expansion for the LLR

estimator over the entire region (y,x) ∈ R×X . For the boundary points x /∈ X̊h1 , the bias is

O(h2
1 +h2

2). For the interior points x ∈ X̊h1 , the bias expression (2.5) is the same as in Hansen

[2004] and Chapter 6 of Li and Racine [2007], which contains the curvature of F(y|x).

2.4 Uniform Convergence Rate

In this section, we derive the uniform convergence rate of the stochastic term

β̂ββ (y,x,h1,h2)− β̄ββ (y,x,h1,h2).

We make use of empirical process theory, which is a powerful tool for studying the uniform

convergence of random sequences. Some auxiliary concepts and results are introduced below.

Let G be a class of uniformly bounded measurable functions defined on some subset

of Rd , that is, there exists M > 0 such that |g| ≤ M for all g ∈ G . We say G is Euclidean
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with coefficients (A,v), where A,v > 0, if for every probability measure P and every ε ∈ (0,1],

N(G ,P,ε) ≤ A/εv, where N(G ,P,ε) is the ε-covering of the metric space (G ,L2(P)), that is,

N(G ,P,ε) is defined as the minimal number of open∥·∥L2(P)-balls of radius ε and centers in G

required to cover G . By definition, if G is Euclidean with coefficients (A,v), then any subset of

G is also Euclidean with coefficients (A,v).

The above definition of Euclidean classes is introduced by Nolan and Pollard [1987].

The same concept is also studied in Giné and Guillou [1999], but they refer to what we call

“Euclidean” as “VC.” There is a slight difference that Nolan and Pollard [1987] use the L1-norm,

while Giné and Guillou [1999] use the L2-norm. We ignored the envelope in their definition

because we only work with uniformly bounded G . The following lemma is useful for deriving

the uniform convergence results.

Lemma 2.2. Let ξ1, · · · ,ξn be an iid sample of a random vector ξ in Rd . Let Gn be a sequence

of classes of measurable real-valued functions defined on Rd . Assume that there is a uniformly

bounded Euclidean class G with coefficients A and v such that Gn ⊂ G for all n. Let σ2
n be a

positive sequence such that σ2
n ≥ supg∈Gn

E[g(ξ )2]. Then

∆n = sup
g∈Gn

∣∣∣∣∣ n

∑
i=1

(g(ξi)−Eg(ξi))

∣∣∣∣∣= Op

(√
nσ2

n | logσn|+ | logσn|
)
.

In particular, if nσ2
n/| logσn| → ∞, then ∆n = Op

(√
nσ2

n | logσn|
)
.

The above lemma is based on the results developed by Giné and Guillou [2001] and Giné

and Guillou [2002]. These two papers focus on proving the almost sure convergence of kernel

density estimators based on empirical process theory. We simplify their method and make it

available to users who are only interested in convergence in probability. Based on Lemma 2.2,

deriving the uniform convergence rate of kernel-based nonparametric estimators boils down to

two parts: proving the relevant function classes are Euclidean and computing a uniform bound

for the variance.
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Controlling the stochastic term does not require the smoothness of the conditional

distribution function F . We only need the assumptions regarding the support X and kernel

functions. The following theorem establishes the uniform convergence rate for the stochastic

term of the LLR estimator. Then, combining this result with Theorem 2.1, we obtain the uniform

convergence rate of the LLR estimator as a corollary.

Theorem 2.2. Let Assumptions X and K hold. If the bandwidth satisfies nhd
1/| logh1| → ∞, then

sup
y∈R,x∈X

∣∣∣H1

(
β̂ββ (y,x,h1,h2)− β̄ββ (y,x,h1,h2)

)∣∣∣= Op

√ | logh1|
nhd

1

 . (2.6)

Corollary 2.1. Let Assumptions X, Y, and K hold. Then

sup
y∈R,x∈X

∣∣∣F̂(y|x)−F(y|x)
∣∣∣= Op

h2
1 +h2

2 +

√
| logh1|

nhd
1

 .

We want to compare the above uniform convergence result with the one in Masry [1996].

In Masry [1996], the covariates X are supported on the entire space Rd while the convergence

result is only uniform for x in a compact subset of Rd . In our case, the support X is compact,

and the convergence result is uniform over the entire support (y,x) ∈ R×X .

Corollary 2.1 shows that the uniformity over y ∈R does not have an impact on the conver-

gence rate. This is similar to the fact that we can uniformly estimate the unconditional distribution

function under the n−1/2-rate. The conditional distribution estimation is a nonparametric problem

concerning only the covariates.

So far we have been studying the smoothed estimator. It is also of interest to study the

unsmoothed version defined as F̌(y|x) = eee⊤0 β̌ββ (y,x,h1), where

β̌ββ (y,x,h1) = argmin
βββ∈Rd+1

n

∑
i=1

(
1{Yi ≤ y}− rrr(Xi − x)⊤βββ

)2
w
(

Xi − x
h1

)
.

The above minimization problem is constructed by replacing the term K((y−Yi)/h2) by the
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term 1{Yi ≤ y}. For this estimator, we only need to chose one bandwidth h1. Since E[1{Yi ≤

y}|X = x] = F(y|x), the bias term of this estimator is only O(h2
1). The bias associated with the

smoothing in y no longer exists. The uniform convergence of F̌ can be established without

the differentiability of F with respect to y. The trade-off is that the estimator F̌(y|x) itself is

not smooth in y even if F is. The stochastic term can be analyzed as before. Then we obtain

the following uniform convergence rate for the unsmoothed estimator. Notice that we replace

Assumption Y by a weaker condition which only requires the smoothness of F with respect to x.

Theorem 2.3. Let Assumptions X and K hold. Assume that F(y|x) restricted to R×X is twice

continuously differentiable in x, and the second-order derivative ∇⊤
x ∇xF is uniformly continuous

on R×X . If the bandwidth satisfies nhd
1/| logh1| → ∞, then

sup
y∈R,x∈X

∣∣∣F̌(y|x)−F(y|x)
∣∣∣= Op

h2
1 +

√
| logh1|

nhd
1

 .

2.5 Uniform Asymptotic Linear Representation

This section derives the uniform asymptotic linear representation of the smoothed LLR

estimator. These results are particularly useful in deriving the asymptotic distribution for

complicated estimators.

Theorem 2.4. Let Assumptions X, Y, and K hold. If the bandwidth satisfies that nhd
1/| logh1|→∞,

nhd+4
1 /| logh1| bounded, and h2 = O(h1), then

H1

(
β̂ββ (y,x,h1,h2)− β̄ββ (y,x,h1,h2)

)
= Ξ(x,h1)

−1 1
nhd

1

n

∑
i=1

sss(Yi,Xi;y,x,h1,h2)+Op

(
| logh1|

nhd
1

)
,
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uniformly over y ∈ R and x ∈ X , where

sss(Yi,Xi;y,x,h1,h2) = rrr
(

Xi − x
h1

)(
K
(

y−Yi

h2

)
− F̃(y|Xi)

)
w
(

Xi − x
h1

)
,

F̃(y|x) = E[K((y−Y )/h2) | X = x].

The asymptotic order of the remainder term, Op

(
| logh1|/nhd

1

)
, is the same as in Equa-

tion (13) of Kong et al. [2010]. Thus, once more, the uniformity over y ∈ R does not have an

impact on the convergence rate. Combining the results in Theorem 2.1 and 2.4 and applying the

central limit theorem for triangular arrays, we can show that the LLR estimator is asymptotic

normal with some asymptotic bias.

We can use this asymptotic linear representation, together with the smoothness of K, to

derive the following stochastic equicontinuity condition.

Corollary 2.2. Let the assumptions of Theorem 2.4 hold. Let δn = o(1). Then the following

stochastic equicontinuity condition hold.

sup
|y1−y2|≤δn,x∈X

∣∣∣F̂(y1|x)−F(y1|x)− (F̂(y2|x)−F(y2|x))
∣∣∣= Op

√ logh1

nhd
1

δn

h2
+

| logh1|
nhd

1

 .

We study another simple example to demonstrate how the uniform asymptotic linear

representation can be used. Suppose that d = 1, X = [x, x̄], and Y is supported on [y, ȳ]. We

want to estimate the integrated conditional distribution θ =
∫ ȳ

y
∫ x̄

x F(y|x)dxdy with the estimator

θ̂ =
∫ ȳ

y
∫ x̄

x F̂(y|x)dxdy. The theorem below gives the asymptotic distribution of the estimator θ̂ .

Corollary 2.3. Let Assumptions X, Y, and K hold. If the bandwidth satisfies that
√

nh1/| logh1|→

∞,
√

nh2
1 → 0 bounded, and h2 = O(h1), then

√
n(θ̂ −θ)

d→ N(0,V ), where

V =
∫ (∫ (

1{s ≤ y}−F(y|t)
)

dy
)2

f (s, t)dtds,
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and f (y,x) denotes the joint density of (Y,X).
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Chapter 3

Efficient and Robust Estimation of the
Generalized LATE Model

3.1 Introduction

Since the seminal works of Imbens and Angrist [1994] and Angrist et al. [1996], the local

average treatment effect (LATE) model has become popular for causal inference in economics.

Instead of imposing homogeneity of the treatment effects as in the classical instrumental variable

(IV) regression model, the LATE framework allows the treatment effect to vary across individuals.

Under the monotonicity condition, the average treatment effect can be identified for a subgroup

of individuals whose treatment choice complies with the change in instrument levels.

The current form of the LATE model only accepts binary treatment variables. This

restriction is inconvenient in many economic settings where the treatment is multi-leveled in

nature. For example, parents select different preschool programs for their kids, schools assign

students to different classroom sizes, families relocate to various neighborhoods in housing

experiments, and people choose different sources of health insurance. To apply the LATE model

to these settings, researchers often need to redefine the treatment so that there are only two

treatment levels. However, merging the treatment levels can complicate the task of program

evaluation and dampen the causal interpretation of the estimates. As pointed out by Kline and

Walters [2016], if the original treatment levels are substitutes, then there is ambiguity regarding

which causal parameters are of interest. After merging the treatment levels, the heterogeneity in
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the treatment effect across different treatment levels is lost.

This paper addresses the above issues by generalizing the LATE framework to incor-

porate the potential multiplicity in treatment levels directly. We call the new framework the

generalized LATE (GLATE) model. The main assumption of the GLATE model is the unordered

monotonicity assumption proposed by Heckman and Pinto [2018a], which is a generalization of

the monotonicity assumption in the binary LATE model.1

We generalize the identification results in Heckman and Pinto [2018a] to explicitly

account for the presence of conditioning covariates, which is often important in practical settings.

Recently, Blandhol et al. [2022] point out that linear TSLS, the common way to control for

covariates in empirical studies, does not bear the LATE interpretation. The only specifications that

have LATE interpretations are the ones that control for covariates nonparametrically. Therefore,

it is essential from the causal analysis perspective to incorporate the covariates into the GLATE

framework in a nonparametric way.

The causal parameters identifiable in the GLATE model include local average structural

function (LASF) and local average structural function for the treated (LASF-T). LASF is the

mean potential outcome for specific subpopulations. These subpopulations are defined by their

treatment choice behaviors and are generalizations of the concepts always takers, compliers,

and never takers in the binary LATE model. The parameter LASF-T further restricts the

subpopulation to exclude individuals who do not take up the treatment.

The paper is concerned with the econometric aspects of the GLATE model. The analysis

begins by deriving efficient influence function (EIF) and semiparametric efficiency bound (SPEB)

for the identified parameters. The calculation is based on the method outlined in Chapter 3

of Bickel et al. [1993] and Newey [1990]. We then verify that the conditional expectation

projection (CEP) estimator [e.g., Chen et al., 2008], constructed directly from the identification

result, achieves the SPEB and hence is semiparametric efficient. Using these results, we may

1To distinguish with the GLATE model, we sometimes use the terminology “binary LATE model” to refer to the
LATE model studied by Imbens and Angrist [1994] and Abadie [2003].
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efficiently estimate other important parameters of interest by the plug-in method since a standard

delta-method argument preserves semiparametric efficiency.

The EIF not only facilitates the efficiency calculation but can also serve as the moment

condition for estimation. This is because the EIF is mean zero by construction and is equal to the

original identification result plus an adjustment term due to the presence of infinite-dimensional

parameters. We show that the moment condition constructed from the EIF satisfies two related

robustness properties: double robustness and Neyman orthogonality. Double robustness guar-

antees that the moment condition is correctly specified in a parametric setting even when some

nuisance parameters are not.

The Neyman orthogonality condition means that the moment condition is insensitive to

the nuisance parameters. This condition is particularly useful when the conditioning covariates

are of high dimension. To further utilize this condition, we study the double/debiased machine

learning (DML) estimator [Chernozhukov et al., 2018] in the GLATE setting. Under certain

conditions regarding the convergence rate of the first-step nonparametric estimators, the DML

estimator is asymptotically normally uniformly over a large class of data generating processes

(DGPs).

The weak identification issue is a practical concern of the GLATE model. This is because

both the treatment and instrument are multi-valued, and hence the subpopulation on which LASF

and LASF-T are defined can be small in size. To deal with this issue, we propose null-restricted

test statistics in one-sided and two-sided testing problems. This procedure is the generalization

of the well-known Anderson-Rubin (AR) test. We show that the proposed tests are consistent

and uniformly control size across a large class of DGPs, in which the size of the subpopulation

mentioned above can be arbitrarily close to zero.

The paper is organized as follows. The remaining part of this section discusses the

literature. Section 3.2 introduces the GLATE model and the nonparametric identification results.

Section 3.3 calculates the EIF and SPEB. Section 3.4 discusses the robustness properties of the

moment condition generated by the EIF. Section 3.5 proposes inference procedures under weak
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identification issues. Section 3.6 presents the empirical application. Section 3.7 concludes. The

proofs for theoretical results in the main text are collected in Appendix A in the Supplementary

Material.

3.1.1 Literature Review

The GLATE model provides a way to conduct causal inference under endogeneity when

the treatment is multi-valued and unordered. As mentioned above, the identification result

(conditional on the covariates) is first established in Heckman and Pinto [2018a] by using

the unordered monotonicity condition. Lee and Salanié [2018] proposes another method of

identification in a similar model of multi-valued treatment. Their method is concerned with

continuous instruments, while the GLATE is framed in terms of discrete-valued instruments.

When the treatment levels are ordered, Angrist and Imbens [1995] derives the identification

and estimation results for the causal parameter, which is a weighted average of LATEs across

different treatment levels.

The literature on semiparametric efficiency in program evaluation starts with the seminal

work of Hahn [1998], which studies the benchmark case of estimating the average treatment effect

(ATE) under unconfoundedness. For multi-level treatment, Cattaneo [2010] studies the efficient

estimation of causal parameters implicitly defined through over-identified non-smooth moment

conditions. In the case where unconfoundedness fails and instruments are present, Frölich [2007]

calculates the SPEB for the LATE parameter, and Hong and Nekipelov [2010a] extend to the

estimation of parameters implicitly defined by moment restrictions. In a more general framework

encompassing missing data, Chen et al. [2008] study semiparametric efficiency bounds and

efficient estimation of parameters defined through overidentifying moment restrictions. However,

there is currently no theoretical research on semiparametric efficient estimation in models that

encompasses endogeneity and unordered multiple treatment levels.

Several ways are available for calculating the EIF for semiparametric estimators, as

illustrated by Newey [1990] and Ichimura and Newey [2022]. Semiparametric efficiency calcula-
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tions can be used to construct robust (Neyman orthogonal) moment conditions. This method is

illustrated in Newey [1994] and Chernozhukov et al. [2016]. Based on the Neyman orthogonality

condition, Chernozhukov et al. [2018] introduces the DML method that suits high dimensional

settings. This is because Donsker properties and stochastic equicontinuity conditions are no

longer required in deriving the asymptotic distribution of the semiparametric estimator.

For testing the GLATE model, Sun [2021] proposes a bootstrap test which is the general-

ization and improvement of the test studied by Kitagawa [2015] in the binary LATE model.

The GLATE model has received attention in the recent empirical literature due to its

ability to model multi-valued treatment. Kline and Walters [2016] evaluate the cost-effectiveness

of Head Start, classifying Head Start and other preschool programs as different treatment levels

against the control group of no preschool. Galindo [2020] assesses the impact of different

childcare choice in Colombia on children’s development. Pinto [2021] studies the neighborhood

effects and voucher effects in housing allocations using data from the Moving to Opportunity

experiment. Our theoretical analysis of the GLATE model presents important tools for estimation

and inference that can be applied to those empirical settings.

3.2 Identification in the GLATE Model

This section describes the generalized local average treatment effect (GLATE) model,

discusses identification of the local average structural function (LASF) and other parameters,

and introduces the notation.

3.2.1 The model

We assume a finite collection of instrument values Z = {z1, · · · ,zNZ} and a finite col-

lection of treatment values T = {t1, · · · , tNT }, where NZ and NT are respectively the total

number of instrument and treatment levels. The sets T and Z are categorical and unordered.

The instrumental variable Z denotes which of the NZ instrument levels is realized. The ran-

dom variables Tz1, · · · ,TzNZ
, each taking values in T , denote the collection of potential treat-
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ments under each instrument status. Thus, the observed treatment level is the random variable

T = TZ = ∑z∈Z 1{Z = z}Tz. For each given treatment level t ∈ T , there is a potential outcome

Yt ∈ Y ⊂ R. The observed outcome is denoted by Y = YT = ∑t∈T 1{T = t}Yt . The random

vector X ∈ X ⊂ RdX contains the set of covariates. The observed data is a random sample

(Yi,Ti,Zi,Xi),1 ≤ i ≤ n.

The description above establishes a random sampling model where the researcher only

observes one potential outcome, the one associated with the observed treatment. This implies that

the sample of Y , observed from an individual with treatment T = t, comes from the conditional

distribution of Yt given T = t rather than from the marginal distribution of Yt . In general, this

fact leads to identifications issues and presents challenges for causal inference. To overcome

these problems, we impose further structures on the model.

Assumption 3.1 (Conditional Independence). ({Yt : t ∈ T },{Tz : z ∈ Z })⊥ Z | X.

Assumption 3.2 (Unordered Monotonicity). For any t ∈ T ,z,z′ ∈ Z , either

P(1{Tz = t} ≥ 1{Tz′ = t} | X) = 1

or

P(1{Tz = t} ≤ 1{Tz′ = t} | X) = 1.

Assumption 3.1 and 3.2 provide the multi-valued analog of Assumption 2.1 in Abadie

[2003]. Assumption 3.1 restricts that the instrument Z is independent with the potential treatments

and outcomes once we condition on X . Assumption 3.2 is the conditional version of the unordered

monotonicity condition proposed by Heckman and Pinto [2018a]. It means that when we focus

on a particular treatment level t and a pair (z,z′) of instrument values, the binary environment

should satisfy the usual monotonicity constraint in the LATE model. Specifically, the unordered

monotonicity condition requires that a shift in the instrument moves all agents uniformly toward
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or against each possible treatment value.2

We define the type S of an individual as the vector of the potential treatments, that is,

S = (Tz1 · · · ,TzNZ
)′.

By construction, S is not observed. Assumption 3.2, the unordered monotonicity condition,

is essentially a restriction on S ≡ supp(S), the support of S. Denote the elements in S by

s1, · · · ,sNS , where NS is the cardinality of S . A convenient way to characterize S is by using

the NZ ×NS matrix R ≡ (s1, · · · ,sNS). The matrix R is referred to as the response matrix since it

describes how each type of individuals’ treatment choice responds to the instrument.

The role of S is to assist the identification of the counterfactual outcomes by dividing the

population into a finite number of groups, where identification can be achieved within specific

groups. Those groups are defined as follows. For k = 0, · · · ,NZ , let Σt,k be the set of types in

which the treatment level t appears exactly k times. That is,

Σt,k ≡ {s ∈ S : ∑
NZ
i=1 1{s[i] = t}= k},

where s[i] denotes the ith element of the vector s. In particular, the collection Σt,k,k = 0, · · · ,NZ

forms a partition of S .

For individuals with type S in the same type set Σt,k, their treatment response in terms of

T = t is in a way homogeneous. Thus, it is easier intuitively to identify the marginal distribution

of the potential outcome Yt within each Σt,k. More specifically, we define the local average

structural functions (LASF) and the local average structural functions for the treated (LASF-T)

2As pointed out by Vytlacil [2002], the LATE monotonicity condition is a restriction across individuals on the
relationship between different hypothetical treatment choices defined in terms of an instrument.
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as follows.

LASF: βt,k ≡ E[Yt | S ∈ Σt,k],

LASF-T: γt,k ≡ E[Yt | S ∈ Σt,k,T = t].

Before presenting the identification results for the above two classes of parameters, we illustrate

the GLATE model in the following two examples.

Example 3.1 (Binary LATE model). In the binary LATE model of Imbens and Angrist [1994],

there are two treatment levels T = {0,1} and two instrument levels Z = {0,1}. There are

three types: S = {s1 = (0,0)′,s2 = (0,1)′,s3 = (1,1)′}, which are referred to in the literature

as never-takers, compliers, and always-takers, respectively. The type set Σ1,0 = {s1} contains

the never-takers, Σ1,1 = {s2} the compliers, and Σ1,2 = {s3} the always-takers. The response

matrix is the following binary matrix

R = (s1,s2,s3) =

0 0 1

0 1 1

 .

The local average treatment effect is the treatment effect for the compliers, which can be written

as the difference between two LASFs:

E[Y1 −Y0 | S = compliers] = E[Y1 −Y0 | T1 > T0] = β1,1 −β0,1.

Example 3.2 (Three treatment levels and two instrument levels). The simplest GLATE model

(excluding the binary case in Example 3.1) has three treatment levels T = {t1, t2, t3} and two

instrument levels Z = {z1,z2}. There are five types specified as the columns in the following
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response matrix

R = (s1,s2,s3,s4,s5) =

t1 t2 t3 t1 t2

t1 t2 t3 t3 t3

 .

In this example, a shift from z1 to z2 moves all agents uniformly toward the treatment level t3.

The type set Σt1,2 = {s1} contains the type that always choose the treatment t1 and thus can be

referred to as t1-always taker. The same applies to Σt2,2 = {s2} and Σt3,2 = {s3}. The type set

Σt1,1 = {s4} switches from t1 to t3 and hence can be considered as t1-swticher (or t1-compliter).

Similarly, we can refer to Σt2,1 = {s5} as t2-switcher and Σt2,1 = {s5} as t3-switcher. This model

is used in Kline and Walters [2016] to study the causal effect of the Head Start preschool program.

The instrument indicates whether the household receives a Head Start offer, and the treatment

levels are t1 = Head Start, t2 = other preschool programs, and t3 = no preschool. The unordered

monotonicity condition means that anyone who changes behavior as a result of the Head Start

offer does so to attend Head Start.

3.2.2 Identification Results

We introduce some matrix notations related to the type S. For each treatment level

t ∈ T , let Bt be a binary matrix of the same dimension as the response matrix R with each

element of Bt signifying whether the corresponding element in the response matrix is t. That

is, Bt [i, j], the (i, j)th element of Bt , is whether Tzi equals t for the subpopulation S = s j. Define

bt,k ≡
(
1{s1 ∈ Σt,k}, · · · ,1{sNS ∈ Σt,k}

)
B+

t , where B+
t is the Moore-Penrose inverse of Bt .

For convenience, we also need some notations regarding conditional expectations. Let

π(X)≡ (πz1(X), · · · ,πzNZ
(X))′ with πz(X)≡ P

(
Z = z | X

)
be the vector of functions that describes the conditional distribution of the instrument Z. For
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each treatment level t ∈ T , let

Pt(X)≡ (Pt,z1(X), · · · ,Pt,zNZ
(X))′ with Pt,z(X)≡ P(T = t | Z = z,X)

be the vector that describes the conditional treatment probabilities given each level of the

instrument. Denote

Qt(X)≡ (Qt,z1(X), · · · ,Qt,zNZ
(X))′ with Qt,z(X)≡ E[Y 1{T = t} | Z = z,X ]

as the vector that contains the conditional outcomes for each treatment level t. Notice that the

functions π , Pt , and Qt are all identified.

Theorem 3.1 (Identification of LASF). Let Assumptions 3.1 - 3.2 hold. Let t ∈ T and k ∈

{1, · · · ,NZ}.

(i) The type set probability is identified by

pt,k ≡ P(S ∈ Σt,k) = bt,kE
[
Pt(X)

]
.

(ii) If pt,k > 0, the LASF is identified by:

βt,k = bt,kE
[
Qt(X)

]
/pt,k.

Theorem 3.1 identifies pt,k, the size of the subpopulation Σt,k, and the local structural

function for that subpopulation. The only exception when the identification fails is when the

type set Σt,0, in which case the individual never chooses the treatment t. This identification result

is a modification of Theorem T-6 in Heckman and Pinto [2018a] that explicitly accounts for

the presence of covariates X . Bayes rule is applied to convert the conditional result into the

unconditional one. The following theorem presents the identification result for the LASF-T.
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Let Zt,k ⊂ Z be the set of instrument values that induces the treatment level t in the type

set Σt,k. That is, Zt,k ≡
{

zi ∈ Z : s[i] = t, for all s ∈ Σt,k
}

, where s[i] denotes the ith element of

the vector s. Then define πt,k ≡ ∑z∈Zt,k
πz as the total probability of those instrument values.

Theorem 3.2 (Identification of LASF-T). Let Assumptions 3.1 - 3.2 hold. Let t ∈ T and

k ∈ {1, · · · ,NZ}. Then Zt,k is nonempty.

(i) The treatment probability within the type set is identified by

qt,k ≡ P
(
T = t,S ∈ Σt,k

)
= bt,kE

[
Pt(X)πt,k(X)

]
.

(ii) If qt,k > 0, then the LASF-T is identified by

γt,k = bt,kE
[
Qt(X)πt,k(X)

]
/qt,k. (3.1)

The identification results are illustrated using the two examples.

Example 3.3 (continues = eg:binary). Since the treatment is binary, the matrix B1 is equal to the

response matrix R. The matrix B1 and its generalized inverse B+
1 are respectively

B1 =

0 0 1

0 1 1

 , and (B+
1 )

′ =

0 −1 1

0 1 0

 .

The matrix B0 and its generalized inverse B+
0 are respectively

B0 =

1 1 0

1 0 0

 , and (B+
0 )

′ =

0 1 0

1 −1 0

 .
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The vectors b1,1 and b0,1 are respectively

b1,1 = (−1,1), and b0,1 = (1,−1).

Theorem 3.1 implies that

β1,1 =
E[Q1,1(X)]−E[Q1,0(X)]

E[P1,1(X)]−E[P1,0(X)]
, and β0,1 =

E[Q0,0(X)]−E[Q0,1(X)]

E[P0,0(X)]−E[P0,1(X)]
.

The two denominators in the above expressions are both equal to the type probability of compliers.

Then the usual identification of the LATE parameter [e.g., Frölich, 2007] follows:

E[Y1 −Y0 | T1 > T0] =

∫
(E[Y | Z = 1,X = x]−E[Y | Z = 0,X = x]) fX(x)dx∫
(E[T | Z = 1,X = x]−E[T | Z = 0,X = x]) fX(x)dx

,

where fX denotes the marginal density function of X.

Example 3.4 (continues = eg:3t2z). Recall that Σt1,1 = {s4} contains the t1-switcher. By Theorem

3.1, the LASF for the treatment level t and the subpopulation S = s4 is identified by3

pt1,1 = E[Pt1,z1(X)]−E[Pt1,z2(X)],

βt1,1 =
E[Qt1,z1(X)]−E[Qt1,z2(X)]

E[Pt1,z1(X)]−E[Pt1,z2(X)]
.

Notice that Zt1,1 = {z1}. Then by Theorem 3.2 we have

qt1,1 = E[(Pt1,z1(X)−Pt1,z2(X))πz1(X)],

γt1,1 =
E[(Qt1,z1(X)−Qt1,z2(X))πz1(X)]

E[(Pt1,z1(X)−Pt1,z2(X))πz1(X)]
.

3The calculation of bt,k is omitted for brevity, but it can be done in the same way as Example 3.1.
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3.3 Semiparametric Efficiency

In this section, we calculate the semiparametric efficiency bound (SPEB) and propose

estimators that achieve such bounds. We focus on the parameters LASF and LASF-T. In

Appendix B in the Supplementary Material, we study general parameters implicitly defined

through moment restrictions.

3.3.1 LASF and LASF-T

For the rest of the paper, we assume that Yt , t ∈ T have finite second moments. This is

necessary since we are studying efficiency. Let ι denote the column vector of ones and ζ (Z,X ,π)

the diagonal matrix with the diagonal elements being 1{Z = z}/πz(X),z ∈ Z . The following

theorem gives the efficient influence function (EIF) and the SPEB for the parameters identified in

the preceding section.

Theorem 3.3 (SPEB for LASF and LASF-T). Let Assumptions 3.1 - 3.2 hold. Let t ∈ T and

k ∈ {1, · · · ,NZ}. Assume that pt,k,qt,k > 0.

(i) The semiparametric efficiency bound for βt,k is given by the variance of the efficient

influence function

ψ
βt,k(Y,T,Z,X ,βt,k, pt,k,Qt ,Pt ,π)

=
1

pt,k
bt,k

(
ζ (Z,X ,π)

(
ι(Y 1{T = t})−Qt(X)

)
+Qt(X)

)
−

βt,k

pt,k
bt,k

(
ζ (Z,X ,π)

(
ι1{T = t}−Pt(X)

)
+Pt(X)

)
.

(3.2)

(ii) The semiparametric efficiency bound for γt,k is given by the variance of the efficient
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influence function

ψ
γt,k(Y,T,Z,X ,γt,k,qt,k,Qt ,Pt ,π)

=
1

qt,k
bt,k

(
ζ (Z,X ,π)

(
ι(Y 1{T = t})−Qt(X)

)
πt,k(X)+Qt(X)1{Z ∈ Zt,k}

)
−

γt,k

qt,k
bt,k

(
ζ (Z,X ,π)

(
ι1{T = t}−Pt(X)

)
πt,k(X)+Pt(X)1{Z ∈ Zt,k}

)
.

(iii) The semiparametric efficiency bound for pt,k is given by the variance of the efficient

influence function

ψ
pt,k(T,Z,X , pt,k,Pt ,π) = bt,k

(
ζ (Z,X ,π)

(
ι1{T = t}−Pt(X)

)
+Pt(X)

)
− pt,k.

(iv) The semiparametric efficiency bound for qt,k is given by the variance of the efficient

influence function

ψ
qt,k(T,Z,X ,qt,k,Pt ,π)

=bt,k

(
ζ (Z,X ,π)

(
ι1{T = t}−Pt(X)

)
πt,k(X)+Pt(X)1{Z ∈ Zt,k}

)
−qt,k.

The EIF in Theorem 3.3 can be interpreted as the moment condition from the identification

results modified by an adjustment term due to the presence of unknown infinite-dimensional

parameters. Take ψβt,k as an example, the terms

bt,k

(
ζ (Z,X ,π)

(
ι(Y 1{T = t})−Qt(X)

))
/pt,k

and

βt,kbt,k

(
ζ (Z,X ,π)

(
ι1{T = t}−Pt(X)

))
/pt,k

are respectively the adjustment terms due to the presence of Qt and Pt .
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From the expression of ψβt,k , we can see that the SPEB would be large when pt,k is

small. This is because pt,k measures the size of the subpopulation S ∈ Σt,k on which the LASF is

estimated. When pt,k is small, we run into the weak identification issue. In Section 3.5, we study

inference procedures that are robust against weak identification issues.

One benefit of the EIFs is that we can easily calculate the covariance matrix of different

estimators. Consider an example where we are interested in two LASFs β1 and β2, whose EIF

is given by ψ1 and ψ2, respectively. If the two estimators β̂1 and β̂2 are both semiparametric

efficient, then their covariance matrix equals E[ψ1ψ ′
2].

Example 3.5 (continues = eg:binary). In the binary LATE model, the first two parts of Theorem

3.3 reduce to Theorem 2 of Hong and Nekipelov [2010a]. If we assume unconfoundedness by

having T = Z, then the result further reduces to Theorem 1 of Hahn [1998].

The derived SPEB helps determine whether an estimation procedure is efficient. In this

section, we focus on the conditional expectation projection (CEP) estimator.4 Define

hY,t,z(X) = E
[
1{Z = z}Y 1{T = t} | X

]
and ht,z(X) = E

[
1{Z = z}1{T = t} | X

]
.

The CEP procedure first estimates πz, hY,t,z, and ht,z by using nonparametric estimators π̂z, ĥY,t,z,

and ĥt,z respectively. These estimators can be constructed based on series or local polynomial

estimation. Then Qt,z and Pt,z are estimated using Q̂t,z = ĥY,t,z/π̂z and P̂t,z = ĥt,z/π̂z. The vectors

of estimators Q̂t and P̂t , π̂ are stacked in an obvious way. Let π̂t,k = ∑z∈Zt,k
π̂z. The CEP

estimators for the structural parameters are defined by

p̂t,k =
1
n

n

∑
i=1

bt,kP̂t(Xi), q̂t,k =
1
n

n

∑
i=1

bt,kP̂t(Xi)π̂t,k(Xi),

β̂t,k =
1

p̂t,k

1
n

n

∑
i=1

bt,kQ̂t(Xi), γ̂t,k =
1

q̂t,k

1
n

n

∑
i=1

bt,kQ̂t(Xi)π̂t,k(Xi).

4The terminology “conditional expectation projection” is adopted from the papers Chen et al. [2008] and
Hong and Nekipelov [2010a], whereas Hahn [1998] refers to these estimators as “nonparametric imputation based
estimators.”
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The next proposition shows that the CEP estimators are semiparametrically efficient. The

result is similar in style to Hahn’s (1998) Proposition 4 that the low-level regularity conditions

are omitted. Instead, the proposition assumes the high-level condition that the CEP estimators

are asymptotically linear, which means they are asymptotically equivalent to sample averages.

More formally, an estimator β̂ of β is asymptotically linear if it admits an influence function.

That is, there exists an iid sequence ψi with zero mean and finite variance such that

√
n(β̂ −β ) =

1√
n

n

∑
i=1

ψi +op(1).

Since each element of the conditional expectations hY,t,z, ht,z, and πz can be considered as coming

from a binary LATE model, the regularity conditions in Hong and Nekipelov [2010b] should

work with little modification.

Proposition 3.1. Suppose the CEP estimators are asymptotically linear, then they achieve the

semiparametric efficiency bound.

The reason that this type of estimator is efficient is well explained in Ackerberg et al.

[2014]. The estimation problem here falls into their general semiparametric model, where the

finite-dimensional parameter of interest is defined by unconditional moment restrictions. They

show that the semiparametric two-step optimally weighted GMM estimators, the CEP estimators

in this case, achieve the efficiency bound since the parameters of interest are exactly identified.

Discussions related to this phenomenon can also be found in Chen and Santos [2018].

We next examine the efficient estimation of other policy-relevant parameters that can

be derived from the parameters
(
βt,k,γt,k, pt,k,qt,k

)
. As an example, consider the type set

Σt ≡ ∪NZ−1
k=1 Σt,k, which is referred to as t-switchers. This subpopulation contains individuals

who switch between t and other treatments when given different levels of instruments. It is a

generalization of the concept of compliers in the binary LATE framework.5 The LASF for the

5Recall that switchers are also illustrated in Example 3.2.
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subpopulation Σt is given by

βt ≡ E
[
Yt | S ∈ Σt

]
=

∑
NZ−1
k=1 βt,k pt,k

∑
NZ−1
k=1 pt,k

.

Similarly, one can also define

γt = E
[
Yt | T = t,S ∈ Σt

]
=

∑
NZ−1
k=1 γt,k pt,k

∑
NZ−1
k=1 pt,k

, (3.3)

which represents the LASF-T for the subpopulation of t-treated t-switchers.

For some subpopulations, a treatment effect can be identified. This point is already

illustrated with Example 3.2 in the discussion of the identification of the usual LATE parameter.

We further illustrate this point with Example 3.2.

Example 3.6 (continues = eg:3t2z). The quantity

βt3,1 −
βt1,1 pt1,1 +βt2,1 pt2,1

pt1,1 + pt2,1

represents the local average treatment effect of t3 against other treatments within the subpopula-

tion of t3-switchers. Analogously, the parameter

γt3,1 −
γt3,t1,1qt3,t1,1 + γt3,t2,1qt3,t2,1

qt3,t1,1 +qt3,t2,1

is the local average treatment effect of t3 against other treatments within the subpopulation of

t3-treated t3-switchers.

To summarize the above examples using a general expression, let φ = φ(p,q,β ,γ) be

a finite-dimensional parameter, where φ(·) is a known continuously differentiable function,

and p is the vector containing all identifiable pt,k’s, that is, p ≡ {pt,k : t ∈ T ,1 ≤ k ≤ NZ}.

Let q,β , and γ be defined analogously. A natural estimator can be defined through the CEP

estimates, φ(p̂, q̂, β̂ , γ̂). The delta method can help calculate the efficiency bound of φ and show
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the efficiency of φ(p̂, q̂, β̂ , γ̂). In fact, by Theorem 25.47 of van der Vaart [1998], we immediately

have the following corollary, which shows that plug-in estimators are efficient.

Corollary 3.1. The semiparametric efficiency bound of φ is given by the variance of efficient

influence function

ψ
φ = ∑

p∈p

∂φ

∂ p
ψ

p + ∑
q∈q

∂φ

∂q
ψ

q + ∑
β∈β

∂φ

∂β
ψ

β + ∑
γ∈γ

∂φ

∂γ
ψ

γ (3.4)

where the partial derivatives are evaluated at the true parameter value. Moreover, the plug-in

estimator φ(p̂, q̂, β̂ , γ̂), based on the CEP estimators p̂, q̂, β̂ , γ̂ , achieves the efficiency bound.

3.4 Robustness

In the previous section, the EIF is used as a tool for computing the SPEB. In this section,

we directly use the EIF as the moment condition for estimation. These moment conditions are

appealing because they satisfy double robustness and local robustness — the two topics of this

section.

A word on notation: in the rest of the paper, we use a superscript o to signify the true

value whenever necessary. For example, when both πo and π appear, the former means the true

probability while the latter denotes a generic function.

3.4.1 Double Robustness

We focus on the LASF βt,k. The same analysis can be applied to the other parameters. To

avoid notational burden in the main text, we drop the subscript (t,k) in βt,k, pt,k, and bt,k, and the

subscript t in Pt and Qt .6 It is straightforward to verify that the EIF ψβ has zero mean. However,

we do not want to use ψβ itself as the estimating equation since it contains 1/p as a factor. To

6The full subscripts are kept in the Appendices.
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deal with this problem, we simply multiply ψβ by p and define

ψ(Y,T,Z,X ,β ,Q,P,π) = pψ
β (Y,T,Z,X ,β , p,Q,P,π)

= b
(

ζ (Z,X ,π)
(
ι(Y 1{T = t})−Q(X)

)
+Q(X)

)
−βb

(
ζ (Z,X ,π)

(
ι1{T = t}−P(X)

)
+P(X)

)
.

The corresponding moment condition is

E
[
ψ(Y,T,Z,X ,β o,Qo,Po,πo)

]
= 0. (3.5)

This moment condition is doubly robust, as demonstrated in the following proposition.

Proposition 3.2 (Double Robustness). Let (Q,P,π) be an arbitrary vector of functions and

(Qo,Po,πo) the true vector of conditional expectations. Then

E
[
ψ(Y,T,Z,X ,β o,Qo,Po,π)

]
= 0

and

E
[
ψ(Y,T,Z,X ,β o,Q,P,πo)

]
= 0.

The above proposition divides the nonparametric nuisance parameters into two groups,

π and (Q,P). The doubly robust moment condition is valid if either of these two groups of

nuisance parameters is true. On the other hand, if the researcher uses parametric models for

these nuisance parameters, then the structural parameter β can be recovered provided that at

least one of the working nuisance models is correctly specified. Therefore, the doubly robust

moment condition is “less demanding” on the researcher’s ability to devise a correctly specified

model for the nuisance parameters. The double robustness result in Proposition 3.2 can be seen
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as the GLATE extension of the existing double robustness results in the binary LATE literature

[e.g., Tan, 2006, Okui et al., 2012].

3.4.2 Neyman Orthogonality

The second robustness property is Neyman orthogonality. Moment conditions with this

property have reduced sensitivity with respect to the nuisance parameters. Formally, Neyman

orthogonality means that the moment condition has zero Gateaux derivative with respect to the

nuisance parameters. The result is presented in the following proposition.

Proposition 3.3 (Neyman Orthogonality). Let (Q,P,π) be an arbitrary set of functions. For

r ∈ [0,1), define Qr = Qo+ r(Q−Qo), Pr = Po+ r(P−Po), and πr = πo+ r(π −πo). Suppose

that supr∈[0,1]
∣∣ ∂

∂ r ψ(Y,T,Z,X ,β ,Qr,Pr,πr)
∣∣ is integrable, then

∂

∂ r
E
[
ψ(Y,T,Z,X ,β ,Qr,Pr,πr)

]∣∣∣
r=0

= 0,

where β does not need to be the true parameter value.

In many econometrics models, double robustness and Neyman orthogonality come

in pairs. Discussions about their general relationships can be found in Chernozhukov et al.

[2016]. In practice, double robustness is often used for parametric estimation, as previously

explained, whereas Neyman orthogonality is used in estimation with the presence of possibly

high-dimensional nuisance parameters.

Next, we apply the double/debiased machine learning (DML) method developed by

Chernozhukov et al. [2018] to the moment condition (3.5). This estimation method works even

when the nuisance parameter space is complex enough that the traditional assumptions, e.g.,

Donsker properties, are no longer valid.7 The implementation details are explained below.

The nuisance parameters Q, P, and π are estimated using a cross-fitting method: Take

7In two-step semiparametric estimations, Donsker properties are usually required so that a suitable stochastic
equicontinuity condition is satisfied. See, for example, Assumption 2.5 in Chen et al. [2003].
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an L-fold random partition of the data such that the size of each fold is n/L. For l = 1, · · · ,L,

let Il denote the set of observation indices in the lth fold and Ic
l =

⋃
l′ ̸=l Il′ the set of observation

indices not in the lth fold. Define Q̌l , P̌l , and π̌ l to be the estimates constructed by using data

from Ic
l . The DML estimator of β is constructed following the moment condition (3.5):8

β̌ =
∑

L
l=1 ∑i∈Il

b
(

ζ (Zi,Xi, π̌
l)
(

ι(Yi1{Ti = t})− Q̌l(Xi)
)
+ Q̌l(Xi)

)
∑

L
l=1 ∑i∈Il

b
(

ζ (Zi,Xi, π̌ l)
(

ι1{Ti = t}− P̌l(Xi)
)
+ P̌l(Xi)

) . (3.6)

To conduct inference, we also need an estimate for the asymptotic variance of β̌ , which

we denote by σ2. The asymptotic variance equals to the expectation of the squared efficient

influence function: σ2 = E
[
ψβ

]2
= E[ψ2]/p2. We first estimate p by using the cross-fitting

method, which is essentially given by the denominator of (3.6):

p̌ =
1
n

L

∑
l=1

∑
i∈Il

b
(

ζ (Zi,Xi, π̌
l)
(

ι1{Ti = t}− P̌l(Xi)
)
+ P̌l(Xi)

)
. (3.7)

Then the asymptotic variance can be estimated by

σ̌
2 =

1
n

L

∑
l=1

∑
i∈Il

(
ψ

β

(
Yi,Ti,Zi,Xi, β̌ , p̌, Q̌l, P̌l, π̌ l

))2

=
1
n

L

∑
l=1

∑
i∈Il

(
ψ

(
Yi,Ti,Zi,Xi, β̌ , Q̌l, P̌l, π̌ l

)
/p̌
)2

.

We want to establish the convergence results for the DML estimator uniformly over a

class of data generating processes (DGPs) defined as follows. For any two constants c1 > c0 > 0,

let P(c1,c0) be the set of joint distributions of (Y,T,Z,X) such that

(i) p ∈ [c0,1],

(ii) E[ψ2],πo
z (X)≥ c0,z ∈ Z , and |Y 1{T = t}|, |Y 1{T = t}−Qo

t (X)| ≤ c1.

8This is the DML2 estimator defined in Chernozhukov et al. [2018]. Another estimator, the DML1 estimator, is
proposed in the same paper. We do not study the DML1 estimator since it is asymptotically equivalent to DML2,
and the authors generally recommend DML2.
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The first condition excludes the case where β is weakly identified (when p can be arbitrarily

close to zero). Inference under weak identification is studied in the next section. The following

theorem establishes the asymptotic properties of the DML estimation procedure. In particular,

the estimator achieves the SPEB.

Theorem 3.4. Let Assumptions 3.1 and 3.2 hold. Assume the following conditions on the

nuisance parameter estimators (Q̌l, P̌l, π̌ l):

(i) For z ∈ Z , |Q̌l| is bounded, P̌l
z and π̌ l

z ∈ [0,1], and π̌ l
z is bounded away from zero.

(ii) maxz∈Z

(
∥Q̂−Qo∥2 ∨∥P̂−Po∥2 ∨∥π̂ −πo∥2

)
= op

(
n−1/4

)
.

Then the estimator β̌ obeys that

σ
−1√n

(
β̌ −β

)
⇒ N(0,1),

uniformly over the DGPs in P(c0,c1). Moreover, the above convergence result continues to

hold when σ is replaced by the estimator σ̌ .

The proof verifies the conditions of Theorem 3.1 in Chernozhukov et al. [2018]. The

essential restriction is on the uniform convergence rate for the estimators of the nuisance

parameters. In low-dimensional settings, one can consider the local polynomial regression for

estimation of the conditional expectations. Under suitable conditions [Hansen, 2008, Masry,

1996], the uniform convergence rate of the local polynomial estimators is (logn/n)2/(dX+4),

which is o(n−1/4) if dX ≤ 3. In high-dimensional settings, as pointed out by Chernozhukov

et al. [2018], the rate o(n−1/4) is often available for common machine learning methods under

structured assumptions on the nuisance parameters.9 This means that the asymptotic normality

of the DML estimator continues to hold.
9This includes the LASSO method under sparsity of the nuisance space. See, for example, Bühlmann and Van

De Geer [2011], Belloni and Chernozhukov [2011], and Belloni and Chernozhukov [2013]. However, Chernozhukov
et al. [2018] also indicate that to prove that machine learning methods achieve the o(n−1/4) rate, one will eventually
have to use related entropy conditions.
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Theorem 3.4 can be directly used to conduct inference on β . Confidence regions can be

constructed by inverting the usual t-tests. These confidence regions are uniformly valid since

the convergence results in the above theorem hold uniformly over P . In the next section, we

explain why uniform validity is crucial when dealing with weak identification issues.

3.5 Weak Identification

The convergence result established in Theorem 3.4 is uniform over the set of DGPs with

type probability p bounded away from zero. However, the identification of β would be weak

in the case where p can be arbitrarily close to zero. This leads to distortion of the uniform size

of the test and poor asymptotic approximation in finite-sample settings. This section studies

this weak identification issue and proposes an inference procedure that is robust against such a

problem.

We begin with a heuristic illustration of the weak identification problem. To ease notation,

define υ = β p and

υ̌ = β̌ p̌ =
L

∑
l=1

∑
i∈Il

b
(

ζ (Zi,Xi, π̌
l)
(

ι(Yi1{Ti = t})− Q̌l(Xi)
)
+ Q̌l(Xi)

)
.

After a simple calculation, we can write

β̌ −β =

√
n(υ̌ −υ)−β

√
n(p̌− p)√

n(p̌− p)+
√

np
.

In the above expression, we can interpret the estimation errors
√

n(υ̌ −υ) and
√

n(p̌− p) as the

noises, while the signal is the term
√

np. Under the usual asymptotics where p > 0 is fixed, the

noise terms are bounded in probability, whereas the signal term
√

np → ∞. Hence, the signal

dominates the noise, and the estimator β̌ is consistent. However, under asymptotics with a

drifting sequence p = pn → 0 and
√

np converging to a finite constant, the signal and the noise

are of the same magnitude, which results in the inconsistency of β̌ . This problem is the weak
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identification issue. In the weak IV literature, a common measure of identification strength is the

so-called concentration parameter. In our case, the concentration parameter is given by
√

np

where
√

np → ∞ corresponds to strong identification, and identification is weak when the limit

of
√

np is finite.

While weak identification is a finite-sample issue, it is formalized using the asymptotic

framework. However, the illustration above using asymptotics under drifting sequences is not

meant to model DGPs that vary with the sample size n. Instead, it is a tool used to detect the

lack of uniform convergence. In fact, controlling the uniform size of the test is the key to solving

weak identification problems.10 Formally, the uniform size of a test is the large sample limit

of the supremum of the rejection probability under the null hypothesis, where the supremum is

taken over the nuisance parameter space. When testing a null hypothesis on β in the GLATE

model, the supremum mentioned above is taken over all values of p > 0. That is, a desirable

test should have rejection probability under the null converge to the nominal size uniformly over

p ∈ (0,1]. From the previous discussion, we can see that the uniform size can not be controlled

using the usual t-statistic
√

n(β̌ −β )/σ̌ . This failure of uniform convergence, however, does

not conflict with Theorem 3.4, where the uniform convergence of β̌ is established only after

restricting p to be bounded away from zero.

Inference procedures that are robust against weak identification can be obtained by

directly imposing the null hypothesis in the construction of the test statistic. One such example

is the well-known Anderson-Rubin (AR) statistic in the weak IV literature. Its idea can be

generalized to the GLATE model. We first consider testing the two-sided hypothesis H0 : β = β0

versus H1 : β ̸= β0. To control the uniform size of the test, we need the test statistic to converge

uniformly on the parameter space where (1) β = β0, and (2) p is allowed to be arbitrarily close

to zero. A null-restricted t-statistic can be obtained as follows. Notice that when p > 0, β = β0

10See, for example, Imbens and Manski [2004], Mikusheva [2007], and Andrews et al. [2020].
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is equivalent to

0 = υ −β0 p = E
[
ψ(Y,T,Z,X ,β0,Q,P,π)

]
. (3.8)

Its estimate can be written as

υ̌ −β0 p̌ = (υ̌ −υ)−β (p̌− p)+(β −β0)p. (3.9)

Under the null hypothesis β = β0, the above estimate does not depend on the concentration

parameter
√

np and consists only of the noise terms υ̌−υ and p̌− p, whose uniform convergence

can be established directly.

For implementation, this test statistic can be obtained as a straightforward application

of the DML procedure described in the previous section to the moment condition (3.8). As a

consequence of Proposition 3.3, the above moment condition satisfies the Neyman orthogonality

condition regardless of the true value of β . More specifically, the null-restricted t-statistic is

defined to be

ρ̌ =
√

n(υ̌ −β0 p̌)/σ̌ψ ,

where

σ̌
2
ψ =

1
n

L

∑
l=1

∑
i∈Il

ψ(Yi,Ti,Zi,Xi,β0, Q̌l, P̌l, π̌ l)2.

The corresponding test of H0 : β = β0 against H1 : β ̸= β0 rejects for large values of |ρ̌|.

The same methodology can be applied to testing one-sided hypothesis H0 : β ≤ β0 versus

H1 : β > β0. Under the null hypothesis, (β −β0)p is non-positive, suggesting that the test should

reject for large values of ρ̌ . Notice that this relies on knowing the sign of p due to the GLATE

model structure. This restriction on the sign of p is similar to knowing the first-stage sign in the
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linear IV model, which is studied by Andrews and Armstrong [2017] in the context of unbiased

estimation.

We now define the set of DGPs that allows p to be arbitrarily close to zero. For any two

constants c1 > c0 > 0, let PWI(c0,c1) be the set of joint distributions of (Y,T,Z,X) such that

(i) p ∈ (0,1],

(ii) E[ψ2],πo
z (X)≥ c0,z ∈ Z , and

∣∣Y 1{T = t}
∣∣ , |Y 1{T = t}−Qo

t (X)| ≤ c1.

For any β ′ ∈ R, let PWI
β ′ (c0,c1) be the subset of PWI(c0,c1) in which the true value of the

parameter β is β ′. In particular, PWI
β0

(c0,c1) denotes the subset where the null hypothesis is

true. The superscript “WI” denotes weak identification. The difference between P(c0,c1) and

PWI(c0,c1) is that PWI(c0,c1) allows the type probability p to be arbitrarily small, whereas the

type probabilities in P(c0,c1) are uniformly bounded away from zero. Denote Nν as the νth

quantile of the standard normal distribution. The following theorem establishes that the above

testing procedures have uniformly correct sizes and are consistent.

Theorem 3.5. Suppose the conditions on the nuisance parameter estimates in Theorem 3.4 hold.

Let α ∈ (0,1) be the nominal size of the tests.

(i) The test that rejects H0 : β = β0 in favor of H0 : β ̸= β0 when |ρ̌|> N1−α

2
has (asymptoti-

cally) uniformly correct size and is consistent. That is,

sup
{
PP

(
|ρ̌|> N1−α

2

)
: P ∈ PWI

β0
(c0,c1)

}
→ α

and

PP

(
|ρ̌|> N1−α

2

)
→ 1,P ∈ PWI

β
(c0,c1),β ̸= β0.

(ii) The test that rejects H0 : β ≤ β0 in favor of H0 : β > β0 when ρ̌ > N1−α has (asymptoti-
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cally) uniformly correct size and is consistent. That is,

sup
{
PP

(
ρ̌ > N1−α

)
: P ∈ PWI

β
(c0,c1),β ≤ β0

}
→ α

and

PP

(
ρ̌ > N1−α

)
→ 1,P ∈ PWI

β
(c0,c1),β > β0.

3.6 Empirical Application

In this section, we apply the theoretical results to data from the Oregon Health Insurance

Experiment [Finkelstein et al., 2012] and examine the effects on the health of different sources

of health insurance. The experiment is conducted by the state of Oregon between March and

September 2008. A series of lottery draws were administered to award the participants the

option of enrolling in the Oregon Health Plan Standard, which is a Medicaid expansion program

available for Oregon adult residents that have limited income. Follow-up surveys were sent out in

several waves to record, among many variables, the participants’ insurance plan and health status.

Finkelstein et al. [2012] obtain the effects of insurance coverage by using a LATE model. We

apply the GLATE model can study the effect heterogeneity across different sources of insurance.

According to the data, many lottery winners did not choose to participate in the Medicaid

program. Instead, they went with other insurance plans or chose not to have any health insurance.

Based on this observation, we can set up the GLATE model. The instrument Z is the binary

lottery that determines whether an individual is selected. The covariates X include the number of

household members and survey waves. Given X , Z is randomly assigned [Finkelstein et al., 2012,

p1071].11 The treatment T is the insurance plan, which contains three categories: Medicaid (m),

non-Medicaid insurance plans (nm), and no health insurance (no). The second category includes

11Though the covariates are discrete, the methods developed in this paper are still different from linear regressions
in Finkelstein et al. [2012].
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Medicare, private plans, employer plans, and other plans. The counterfactual health plan choices

under different lottery results are the variables T0 and T1. The unordered monotonicity condition

requires that any participant who changes insurance plan due to winning the lottery does so to

enroll in the Medicaid program.

The above setup is the same as Example 3.2. We follow the terminologies in Kline and

Walters [2016] and define the following six type sets by their counterfactual insurance plan

choices:

1. no-never takers: S ∈ Σno,2 = {s1}, T0 = T1 = no;

2. nm-never takers: S ∈ Σnm,2 = {s2}, T0 = T1 = nm;

3. always takers: S ∈ Σm,2 = {s3}, T0 = T1 = m;

4. no-compliers: S ∈ Σno,1 = {s4}, T0 = no, T1 = m;

5. nm-compliers: S ∈ Σnm,1 = {s5}, T0 = nm, T1 = m;

6. compliers: S ∈ Σm,1 = {s4,s5}, T0 ̸= m, T1 = m.

The two groups of never takers choose not to join Medicaid regardless of the offer. Always

takers manage to enroll in Medicaid even without an offer. The no- and nm- compliers switch

to Medicaid from no insurance plan and other plans, respectively, upon winning the lottery.

Combining these two groups gives the larger set of compliers.

Table 3.1 shows the estimated probabilities of the six types.12 We can see that half of the

population are no-never takers, who are never covered by any insurance plan. The compliers

make up around one-fifth of the population. There are effectively no nm-compliers, meaning that

the experiment does not crowd out other insurance plan choices. These findings are consistent

with Finkelstein et al. [2012].
12We use the data from the 12-month survey. After taking care of the missing values, we are left with 23290

observations. For cross-fitting, we choose L = 10.
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Table 3.1. Estimated probability of different types.

Type Probability Estimate (se)

no-never takers pno,2 .492 (.046)
nm-never takers pnm,2 .208 (.018)
always takers pm,2 .116 (.018)
no-compliers pno,1 .197 (.059)
nm-compliers pnm,1 .010 (.024)

compliers pm,1 .208 (.060)

The outcome of interest Y is health status, which is (inversely) measured by the number

of days (out of past 30) when poor health impaired regular activities.13 The potential outcomes

are denoted by Yno, Ynm, and Ym. By Theorem 3.1, we can identify the distribution of Yno for

no-never takers and no-compliers, the distribution of Ynm for nm-never takers and nm-compliers,

and the distribution of Ynm for always takers and compliers. Table 3.2 reports the estimated

LASFs.14 We can clearly see a pattern of self-selection into the treatment. For example, when

there is no insurance coverage, the potential health status of no-compliers is worse than no-never

takers and therefore choose to enroll in Medicaid.

Table 3.2. Estimated LASFs.

Type Treatment LASF Estimate (se)

no-never takers no βno,2 6.78 (1.19)
nm-never takers nm βnm,2 7.74 (1.05)
always takers m βm,2 9.96 (1.75)
no-compliers no βno,1 11.50 (2.92)

compliers m βm,1 0.48 (3.42)

3.7 Concluding Remarks

In this paper, we considered the estimation of the causal parameters, LASF and LASF-T,

in the GLATE model by using the EIF. The proposed DML estimator satisfies the SPEB and can

13Other types of outcomes are also studied by Finkelstein et al. [2012], including health care utilization and
financial strain. Here we only focus on health status for simplicity.

14The LASF βnm,1 is excluded because there are few nm-compliers as reported in Table 3.1.
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be applied in situations, such as high-dimensional settings, where Donsker properties fail. For

inference, we proposed generalized AR tests robust against weak identification issues. Currently,

empirical researchers use the TSLS and control the covariates linearly in models with multi-

valued treatments and instruments. This linear specification does not have LATE interpretation,

as pointed out by Blandhol et al. [2022]. Therefore, we advocate using the semiparametric

methods studied by this paper in those cases.
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Appendix A

Appendix for Chapter 1

A.1 Proof of identification results

In this section we prove the identification results including Lemma 1.1, Lemma 1.2,

Theorem 1.1, Corollary 1.1, and Corollary 1.2.

Proof of Lemma 1.1. We first prove the second equality in Equation (1.3). The conditional

distribution function of T given R is

FT |R(t|r) = P(T ≤ t|R = r)1{r < r̄}+P(T ≤ t|R = r)1{r ≥ r̄}

= P(U0 ≤ m−1
0 (r, t)|R = r)1{r < r̄}+P(U1 ≤ m−1

1 (r, t)|R = r)1{r ≥ r̄}

= FU0|R(m
−1
0 (r, t)|r)1{r < r̄}+FU1|R(m

−1
1 (r, t)|r)1{r ≥ r̄},

where the last line follows from the monotonicity of m0 and m1. Therefore, we have

FT |R(T |R) = FU0|R(m
−1
0 (R,T )|R)1{R < r̄}+FU1|R(m

−1
1 (R,T )|R)1{R ≥ r̄}

= FU0|R(U0|R)1{R < r̄}+FU1|R(U1|R)1{R ≥ r̄}=U.

For (i) of Lemma 1.1, take any u ∈ [0,1] and r < r̄, we have

P(U ≤ u|R = r) = P(FU0|R(U0|r)≤ u|R = r) = u.
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Similarly, we can show that P(U ≤ u|R = r) = u when r ≥ r̄. Therefore, U |R follows the uniform

distribution. Then the second argument follows from the monotonicity of h with respect to the

second argument. The statements (ii) and (iii) are straightforward from the definition of h0 and

h1 and the monotonicity and continuity assumptions. For (iv), notice that for r < r̄,

Fε|U,R(e|u,r) = P(ε ≤ e|U = u,R = r)

= P(ε ≤ e|FU0|R(U0|r) = u,R = r)

= P(ε ≤ e|U0 = F−1
U0|R(u|r),R = r)

= Fε|U0,R

(
e|F−1

U0|R(u|r),r
)
,

where the third equality follows from the strict monotonicity of F−1
U0|R(u|r) in u imposed in

Assumption 1.2(ii). Similarly, we can show that for r ≥ r̄,

Fε|U,R(e|u,r) = P(ε ≤ e|U = u,R = r) = Fε|U1,R

(
e|F−1

U1|R(u|r),r
)
.

Combining the two equations together, we have

Fε|U,R(e|u,r) =


Fε|U0,R

(
e|F−1

U0|R(u|r),r
)
,r < r̄,

Fε|U1,R

(
e|F−1

U1|R(u|r),r
)
,r ≥ r̄.

By Assumption 1.2(iii), we know that Fε|U,R(e|u,r) is strictly increasing in the first argument

e. By Bayes rule, the rank similarity condition in Assumption 1.3 implies that U0|R = r̄− has

the same distribution as U1|R = r̄+, and ε|U0,R = r̄− has the same distribution as ε|U1,R = r̄+.

Then we have

lim
r↑r̄

Fε|U,R(e|u,r) = Fε|U0,R

(
e|F−1

U0|R(u|r̄), r̄
)
= Fε|U1,R

(
e|F−1

U1|R(u|r̄), r̄
)
= lim

r↓r̄
Fε|U,R(e|u,r).
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Lemma A.1. Let f : (x,y) 7→ z be a real-valued bivariate function defined on a compact set in

R×Rd . Assume that f is continuous on its entire domain and strictly increasing in the first

argument x. Let f−1 denote the inverse of f with respect to the first argument. Then f−1 is

continuous on its domain and strictly increasing in the first argument.

Therefore, under Assumptions 1.1 and 1.2, the inverse of g,h0 and h1 (with respect to

the last argument), which are respectively g−1,(h0)
− and (h1)

−, are all continuous and strictly

increasing with respect to the last argument.

Proof of Lemma A.1. Fix any (z0,y0), we want to show that f−1(z0, ·) is continuous at (z0,y0).

If not, then there exists δ > 0 and a sequence {(zk,yk)} such that ∥(zk,yk)− (z0,y0)∥< 1/k but

| f−1(z0,yk)− f−1(z0,y0)|> δ .

Denote xk = f−1(zk,yk) and x0 = f−1(z0,y0). Because the sequence {xk} lies in a compact set,

it has a convergent subsequence. Without loss of generality, we assume {xk} itself is converging.

Then limxk ̸= x0. However, by the continuity of f ,

f (limxk,y0) = f (limxk, limyk) = lim f (xk,yk) = z0 = f (x0,y0).

This leads to a contradiction since f (·,y0) is strictly increasing.

To show that f−1 is strictly increasing with respect to the first argument, take any y

and z1 > z0. If f−1(z1,y)≤ f−1(z0,y), then z1 = f ( f−1(z1,y),y)≤ f ( f−1(z0,y),y) = z0, which

leads to a contradiction.

Proof of Lemma 1.2. By the definition of F−
Y |T,R and the monotonicity and continuity of g∗ and
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h0,

LHS of (1.5) with g = g∗ = lim
r↑r̄

FY |T,R(g
∗(h0(r,u),r,e)|h0(r,u),r)

= lim
r↑r̄

P(Y ≤ g∗(h0(r,u),r,e)|T = h0(r,u),R = r)

= lim
r↑r̄

P(g∗(h0(r,u),r,ε)≤ g∗(h0(r,u),r,e)|T = h0(r,u),R = r)

= lim
r↑r̄

P(ε ≤ e|U = u,R = r)

= Fε|U,R(e|u,r)

where the last line follows from the continuity of Fε|U,R(e|u,r) with respect to the last argument

r (Lemma 1.1). Similarly, we can show that the RHS of (1.5) is equal to Fε|U,R(e|u, r̄). Then the

result follows.

Proof of Theorem 1.1. Denote

T × = {h0(r̄,u) : h0(r̄,u) = h1(r̄,u) ∈ [t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ],u ∈ [0,1]}.

By Assumption 1.5(ii), T × is nonempty and finite. Then [t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ] is a closed interval with

nonempty interior.1 Let

inf([t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ]) = t1 ≤ t2 ≤ ·· · ≤ tL = sup([t ′0, t

′′
0 ]∩ [t ′1, t

′′
1 ])

denote the unique elements of T ×∪{inf([t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ]),sup([t ′0, t

′′
0 ]∩ [t ′1, t

′′
1 ])}.

Here is the strategy of the proof. For each g ∈ G that satisfies Equation (1.5), define

λ̃
g(t,e) = g−1(t, r̄,g∗(t, r̄,e)). (A.1)

1Notice that if [t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ] is a singleton, then T × is empty.
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The goal is to show that λ̃ g is constant as a function of t for every e ∈ E . We proceed in five

steps. Step 1 derives some useful properties of the function λ̃ g, including an important identity,

Equation (A.2). Step 2 shows that λ̃ g is constant in t on the interval (t1, t2). Step 3 shows that λ̃ g

is constant in t on the entire region [t1, tL] = [t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ]. Step 4 further expands this constancy

to [t ′0, t
′′
0 ]∪ [t ′1, t

′′
1 ]. Step 5 concludes.

Step 1. Since g∗ and g−1 are continuous and are strictly increasing in the last argument, λ̃ g

is also continuous and strictly increasing in the last argument. Also, F−
Y |T,R(·|t, r̄) is strictly

increasing since

F−
Y |T,R(y|t, r̄) = Fε|U,R((g

∗)−1(t, r̄,y)|h−1
0 (r̄, t), r̄)

is strictly increasing in y (Assumption 1.2(ii)).

Notice that g(t, r̄, λ̃ g(t,e)) = g∗(t, r̄,e). Then for any e ∈ E and u ∈ [0,1],

F−
Y |T,R(g(h0(r̄,u), r̄, λ̃ g(h0(r̄,u),e))|h0(r̄,u), r̄)

=F−
Y |T,R(g

∗(h0(r̄,u), r̄,e)|h0(r̄,u), r̄)

=F+
Y |T,R(g

∗(h1(r̄,u), r̄,e)|h1(r̄,u), r̄)

=F+
Y |T,R(g(h1(r̄,u), r̄, λ̃ g(h1(r̄,u),e))|h1(r̄,u), r̄),

where the second inequality follows from Lemma 1.2. The above equality implies

λ̃
g(h0(r̄,u),e) = λ̃

g(h1(r̄,u),e). (A.2)

To see that, suppose there exists e and u such that λ̃ g(h0(r̄,u),e) ̸= λ̃ g(h1(r̄,u),e). Since g
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satisfies Condition (1.5),

F−
Y |T,R(g(h0(r̄,u), r̄, λ̃ g(h1(r̄,u),e))|h0(r̄,u), r̄)

=F+
Y |T,R(g(h1(r̄,u), r̄, λ̃ g(h1(r̄,u),e))|h1(r̄,u), r̄)

=F−
Y |T,R(g(h0(r̄,u), r̄, λ̃ g(h0(r̄,u),e))|h0(r̄,u), r̄),

which violates the fact that F−
Y |T,R(g(h0(r̄,u), r̄, ·)|h0(r̄,u), r̄) is strictly increasing.

Step 2. Consider the interval (t1, t2). By construction, {t1, t2}∩T × ̸= /0. Notice that over (t1, t2),

h−1
0 (r̄, ·) and h−1

1 (r̄, ·) do not intersect. Then by continuity, one of them is always strictly greater

than the other. The goal is to show that λ̃ g(t,e) is constant as a function of t over (t1, t2). There

are four cases to consider, depending on whether t1 ∈ T × or t2 ∈ T × and whether h−1
0 (r̄, ·) is

strictly greater or smaller than h−1
1 (r̄, ·) over (t1, t2).

We first focus on the case of t1 ∈ T × and h−1
0 (r̄, ·) < h−1

1 (r̄, ·) over (t1, t2). The other

cases are essentially the same. Define a mapping π(t) = h1(r̄,h−1
0 (r̄, t)). Such a mapping π

maps the interval (t1, t2) back to itself. To see that, we first notice that π(t) is less than t for any

t ∈ (t1, t2) since

π(t) = h1(r̄,h−1
0 (r̄, t))≤ h1(r̄,h−1

1 (r̄, t)) = t < t2.

Suppose π(t)≤ t1, then

h−1
0 (r̄, t1) = h−1

1 (r̄, t1)

≤ h−1
1 (r̄,π(t))

= h−1
0 (r̄, t),

where the first line follows from t1 ∈ T ×, the second line follows from the monotonicity of

h−1
1 and π(t)≤ t1, and the last line follows from the definition of π . This contradicts the strict
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monotonicity of h−1
0 (r̄, ·) since t1 < t.

Now pick any t̃0 ∈ (t1, t2), the recursive sequence t̃k+1 = π(t̃k) is well-defined. This

sequence is non-increasing and bounded below by t1. Therefore, limk→∞ t̃k exists and lies in the

interval [t1, t2). By the continuity of h−1
0 and h−1

1 ,

h−1
0 (r̄, lim t̃k) = limh−1

0 (r̄, t̃k)

= limh−1
1 (r̄,π(t̃k))

= limh−1
1 (r̄, t̃k+1)

= h−1
1 (r̄, lim t̃k+1),

where the second line follows from the definition of π and the third line follows from the

construction of the sequence {t̃k}. Then it must be true that lim t̃k = t1 since we are studying the

case where h−1
0 (r̄, ·)< h−1

1 (r̄, ·) over (t1, t2).

Equation (A.2) implies that λ̃ g(·,e) is invariant with respect to the transformation π:

λ̃
g(π(t), r̄,e) = λ̃

g(t,e),

for every t ∈ [t ′0, t
′′
0 ] and e ∈ E . Then λ̃ g is invariant along the sequence {t̃k}. By the continuity

of λ̃ g,

λ̃
g(t̃0,e) = lim

k→∞
λ̃

g(t̃0,e) = lim
k→∞

λ̃
g(t̃k,e) = λ̃

g( lim
k→∞

t̃k,e) = λ̃
g(t1,e) = λ

g(e),

where the first equality holds since λ̃ g(t̃0, r̄,e) is constant with respect to k, the second equality

holds since λ̃ g is invariant along the sequence {t̃k}, the third equality follows from the continuity

of λ̃ g, and the last equality is the definition of the function λ on E .

Since the initial point t̃0 is chosen arbitrarily from the interval (t1, t2), the above analysis

shows that λ̃ g(t,e) = λ g(e) for t ∈ (t1, t2) (hence for t ∈ [t1, t2], by continuity) and e ∈ E .
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Recall that this analysis is conducted for the case where t1 ∈ T × and h−1
0 (r̄, ·) is strictly

smaller than h−1
1 (r̄, ·) over (t1, t2). The other three cases reach the same conclusion that λ̃ g(t,e)

is equal to λ g(e) over [t1, t2]×E through symmetric arguments. More specifically, we can switch

h1 and h0 in defining π so that the sequence {t̃k} tends to a point in T ×.

Step 3. Repeat step 2 on each interval (tl, tl+1), l = 2, · · · ,L. It follows that λ̃ g(t,e) = λ g(e) over

([t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ])× [0,1].

Step 4. Pick any t ′ ∈ int([t ′0, t
′′
0 ]∪ [t ′1, t

′′
1 ])\ [t1, tL] (if this set is nonempty). There are four cases to

consider, depending on whether t ′ ∈ [t ′0, t
′′
0 ] or t ′ ∈ [t ′1, t

′′
1 ] and whether t ′′0 < t ′′1 or t ′′0 > t ′′1 . Without

loss of generality, assume that t ′ ∈ [t ′0, t
′′
0 ] and t ′′0 < t ′′1 . The other three cases can be dealt with

symmetric arguments. In this case, t ′1 < t ′′0 because [t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ] is a non-degenerate interval.

Denote t ′′ ∈ [t ′1, t
′′
1 ] such that h−1

0 (r̄, t) = h−1
1 (r̄, t ′′). It must be the case that t ′′ ∈ [t ′1, t

′′
0 ]. If that is

not the case, then t ′′ > t ′′0 . Then for any t ∈ [t ′1, t
′′
0 ],

h−1
0 (r̄, t)> h−1

0 (r̄, t ′) = h−1
1 (r̄, t ′′)> h−1

1 (r̄, t), t ∈ [t ′0, t
′′
0 ]∩ [t ′1, t

′′
1 ],

by the strict monotonicity of h−1
0 (r̄, ·) and h−1

1 (r̄, ·). However, this contradicts the assumption

that T × is nonempty. Then by (A.2),

λ̃
g(t ′,e) = λ̃

g(t ′′,e) = λ
g(e).

Step 5. By the definition of λ̃ g in (A.1), we now have

g∗(t, r̄,e) = g(t, r̄,λ g(e)), for t ∈ [t ′0, t
′′
0 ]∪ [t ′1, t

′′
1 ],e ∈ E .

By the properties of λ̃ g, we know λ g is continuous and strictly increasing. The above statement

holds for any g ∈ G that satisfies Equation (1.5).
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Proof of Corollary 1.1. Based on the definition of Fg◦

ε|U,R in (1.6), Theorem 1.1 and Lemma 1.2,

we have

Fg◦

ε|U,R(λ
g(e)|u, r̄) = F−

Y |T,R(g
◦(h0(r̄,u), r̄,λ g◦(e))|h0(r̄,u), r̄)

= F−
Y |T,R(g

◦(h0(r̄,u), r̄,e)|h0(r̄,u), r̄)

= Fε|U,R(e|u, r̄).

The second claim follows from a change of variable.

Proof of Corollary 1.2. By construction,
∥∥Dγ,h∗

∥∥
w ≥ 0 for any γ ∈ Γ. By Lemma 1.2, we have∥∥Dγ∗,h∗

∥∥
w = 0. We want to show that γ∗ is the unique zero. Since w > 0, we have

∥∥Dγ,h∗
∥∥

w = 0 =⇒ Dγ,h∗(e,u) = 0, for all e ∈ E ,u ∈ [0,1]

=⇒ Condition (1.5) is satisfied by gγ(·, r̄, ·),

where the second line follows by taking the partial derivative with respect to u on both sides.

By Theorem 1.1, this implies that gγ(·, r̄, ·) = gγ ′(·, r̄,λ (·)). By Assumption 1.7, it must be that

γ = γ∗. Therefore, γ∗ is the unique minimizer of
∥∥Dγ,h∗

∥∥
w.

A.2 Proof of estimation results

This section proceeds as follows. Section A.2.1 provides the proofs of Theorem 1.2 and

Proposition 1.1. Section A.2.2 introduces the empirical process theory and presents the lemmas

on the uniform convergence results used in Section A.2.1. Section A.2.3 discusses the consistent

estimation of the asymptotic covariance matrix.
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A.2.1 Proofs of Theorem 1.2 and Proposition 1.1

Proof of Theorem 1.2. In this proof, the functions h1(r,u), h0(r,u), and g(t,r,e) are only evalu-

ated at r = r̄. For simplicity, we omit this argument r̄ throughout. The proof proceeds with seven

steps:

• Step 1 contains preliminary results on the LLR estimator of the condition distribution

Y |T,R.

• Step 2 derives the consistency of γ̂ .

• Step 3 derives an initial estimate of the convergence rate of γ̂ .

• Step 4 proves a stochastic equicontinuity condition on the criterion function.

• Step 5 presents a linear approximation of the criterion function.

• Step 6 shows the asymptotic normality of the minimizer of the linearized criterion function.

• Step 7 derives the asymptotic normal distribution of γ̂ .

Step 1. (Preliminary results on LLR.) Let Xi(t) = (1,(Ti − t)/b1,(Ri − r̄)/b1)
′ denote the vector

containing the regressors in the LLR. For xxx = (1,x1,x2), let

k0(xxx) = kT (x1)kR(x2)1{x2 < 0},

k1(xxx) = kT (x1)kR(x2)1{x2 ≥ 0}.

The kernel weights in the LLR can be written as

k0(Xi(t)) = kT
(
(Ti − t)/b1

)
kR
(
(Ri − r̄)/b1

)
1{Ri < r̄},

k1(Xi(t)) = kT
(
(Ti − t)/b1

)
kR
(
(Ri − r̄)/b1

)
1{Ri ≥ r̄}.
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From Chapter 2 of this dissertation, we have the following uniform asymptotic linear representa-

tion for the LLR estimator of the conditional distribution functions:

F̂−
Y |T,R(y|t, r̄)−F−

Y |T,R(y|t, r̄) = b2
1µ0(y, t)+ ι

′
Ξ0(t)−1 1

nb2
1

n

∑
i=1

s0(Yi,Ti,Ri,y, t)

+Op

(
b3

1 +
| logb1|

nb2
1

)
,

uniformly over y ∈ R, t ∈ [t ′0, t
′′
0 ], and

F̂+
Y |T,R(y|t, r̄)−F+

Y |T,R(y|t, r̄) = b2
1µ1(y, t)+ ι

′
Ξ1(t)−1 1

nb2
1

n

∑
i=1

s1(Yi,Ti,Ri,y, t)

+Op

(
b3

1 +
| logb1|

nb2
1

)
,

uniformly over y ∈ R, t ∈ [t ′1, t
′′
1 ]. In the above expressions, ι = (1,0, · · · ,0). The functions

µ0(y, t) and µ1(y, t) are defined by

µ0(y, t) =
b2

1
2

ι
′
Ω0(t)−1 ∂ 2

∂ t2 F−
Y |T,R(y|t, r̄)

∫
xxxx2

1k0(xxx)1{t +b1x1 ∈ [t ′0, t
′′
0 ]}dx1dx2

+
b2

1
2

ι
′
Ω0(t)−1 ∂ 2

∂ r2 F−
Y |T,R(y|t, r̄)

∫
xxxx2

2k0(xxx)1{t +b1x1 ∈ [t ′0, t
′′
0 ]}dx1dx2

+b2
1ι

′
Ω0(t)−1 ∂ 2

∂ t∂ r
F−

Y |T,R(y|t, r̄)
∫

xxxx1x2k0(xxx)1{t +b1x1 ∈ [t ′0, t
′′
0 ]}dx1dx2

+
b2

2
2

Ω0(t)−1 ∂ 2

∂y2 F−
Y |T,R(y|t, r̄)

∫
xxxk0(xxx)1{t +b1x1 ∈ [t ′0, t

′′
0 ]}dx1dx2,
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and

µ1(y, t) =
b2

1
2

ι
′
Ω1(t)−1 ∂ 2

∂ t2 F+
Y |T,R(y|t, r̄)

∫
xxxx2

1k1(xxx)1{t +b1x1 ∈ [t ′1, t
′′
1 ]}dx1dx2

+
b2

1
2

ι
′
Ω1(t)−1 ∂ 2

∂ r2 F+
Y |T,R(y|t, r̄)

∫
xxxx2

2k1(xxx)1{t +b1x1 ∈ [t ′1, t
′′
1 ]}dx1dx2

+b2
1ι

′
Ω1(t)−1 ∂ 2

∂ t∂ r
F+

Y |T,R(y|t, r̄)
∫

xxxx1x2k1(xxx)1{t +b1x1 ∈ [t ′1, t
′′
1 ]}dx1dx2

+
b2

2
2

Ω1(t)−1 ∂ 2

∂y2 F+
Y |T,R(y|t, r̄)

∫
xxxk1(xxx)1{t +b1x1 ∈ [t ′1, t

′′
1 ]}dx1dx2.

The matrices Ω0(t), Ω1(t), Ξ0(t), and Ξ1(t) are defined by

Ω0(t) =
∫

xxxxxx′k0(xxx)1{t +b1x1 ∈ [t ′0, t
′′
0 ]}dx1dx2,

Ω1(t) =
∫

xxxxxx′k1(xxx)1{t +b1x1 ∈ [t ′1, t
′′
1 ]}dx1dx2,

and

Ξ0(t) =
∫

xxxxxx′k0(xxx) f−T,R(t +b1x1, r̄+b1x2)dx1dx2,

Ξ1(t) =
∫

xxxxxx′k1(xxx) f−T,R(t +b1x1, r̄+b1x2)dx1dx2.

The terms s0 and s1 are defined by

s0(Yi,Ti,Ri,y, t) = Xi(t)K̃Y (Yi,Ti,Ri;y, t)k0(Xi(t)),

s1(Yi,Ti,Ri,y, t) = Xi(t)K̃Y (Yi,Ti,Ri;y, t)k1(Xi(t)),

K̃Y (Yi,Ti,Ri,y) = KY
(
(y−Yi)/b1

)
−E

[
KY
(
(y−Yi)/b1

)
|Ti,Ri

]
.

Under Assumption 1.9(i) and (ii) and Assumption 1.11(i), we can apply Lemma 2.1 in Chapter

2 of this dissertation, which is a modification of Lemma 11 in Fan and Guerre [2016], and

obtain that the eigenvalues of Ω0(t), Ω1(t), Ξ0(t) and Ξ1(t) are bounded and bounded away
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from zero for all values of t and b1. Consequently, the norm of these matrices and there inverses

are bounded.

Notice that in Chapter 2 of this dissertation, the remainder term from the bias expansion

is o(b2
1) while in the above asymptotic linear representation, the corresponding term is O(b3

1).

This is because we assume that F−
Y |T,R and F+

Y |T,R are three-times continuously differentiable

(Assumption 1.9). Under this assumption, we can go through the same steps as in the proof

of Theorem 2.1 in Chapter 2 of this dissertation and show that the remainder from the bias

expansion is O(b3
1). The details are omitted for brevity. The bias terms µ0(y, t) and µ1(y, t) are

continuously differentiable under Assumption 1.9. The indicator functions inside the integral,

for example, 1{t +b1x1 ∈ [t ′0, t
′′
0 ]}, can be eliminated by explicitly indicating the lower and upper

limits of the corresponding integral. The derivative can then be taken by using the Leibniz rule.

Step 2. (Consistency of γ̂ .) Because w is positive and integrates to 1, we have ∥D̂
γ,ĥ −D

γ,ĥ∥w ≤

∥D̂
γ,ĥ −D

γ,ĥ∥∞. For any γ ∈ Γ, we can apply Fubini’s theorem to the uniform asymptotic linear

representation and obtain that

D̂
γ,ĥ(e,u)−D

γ,ĥ(e,u) = I+ II+Op

(
b2

1 + logn/(nb2
1)
)

uniformly over γ ∈ Γ,e ∈ E , and u ∈ (0,1), where

I =
1

nb2
1

n

∑
i=1

∫ u

0
ι
′
Ξ0(ĥ0(v))−1s0(Yi,Ti,Ri;gγ(ĥ0(v),e), ĥ0(v))dv,

II =
1

nb2
1

n

∑
i=1

∫ u

0
ι
′
Ξ1(ĥ1(v))−1s1(Yi,Ti,Ri;gγ(ĥ1(v),e), ĥ1(v))dv.

By symmetry, we only need to study the term I. Denote 1ĥ0
= 1{ĥ0 ∈ H0(P

n
0 )} as the indicator
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of whether ĥ0 ∈ H0(P
n
0 ). Then I ≤ I.1+ I.2, where

I.1 = sup
γ∈Γ,h0∈H0(P

n
0 ),e∈E ,u∈(0,1)

∣∣∣∣∣ 1
nb2

1

n

∑
i=1

∫ u

0
ι
′
Ξ0(h0(v))−1s0(Yi,Ti,Ri;gγ(h0(v),e),h0(v))dv

∣∣∣∣∣ ,
I.2 = (1−1ĥ0

) sup
y∈Y ,t∈[t ′0,t ′′0 ]

∣∣∣∣∣ 1
nb2

1

n

∑
i=1

ι
′
Ξ0(t)−1s0(Yi,Ti,Ri;y, t)

∣∣∣∣∣
Define

α̃n = n−1/2b−7/12−ε̄/5
1 , and αn =

(
b2

1 +
√

logn/(nb4
1)

)
(b2

1 + α̃n), (A.3)

where ε̄ is defined in Assumption 1.12. In Lemma A.6, we show that I.1 = Op(α̃n). Combining

Assumption 1.13(i) and Lemma A.8, we have I.2 = Op(α̃n). Therefore,

sup
γ∈Γ

∥∥∥D̂
γ,ĥ −D

γ,ĥ

∥∥∥
w

Op(b2
1 + α̃n). (A.4)

By the smoothness of F−
Y,T,R and gγ , the following term is O(∥ĥ−h∗∥∞):

sup
γ∈Γ

∣∣∣∣∫ u

0

(
F−

Y |T,R(gγ(ĥ0(v),e)|h0(v), r̄)−F−
Y |T,R(gγ(h∗0(v),e)|h0(v), r̄)

)
dv
∣∣∣∣

Therefore, we obtain that uniformly over γ ∈ Γ,

∥∥∥D
γ,ĥ −Dγ,h∗

∥∥∥
w
= O(∥ĥ−h∗)∥∞ = Op

(
b2

1 +
√

logn/(nb1)
)
.

By the triangle inequality, we have

∥∥∥Dγ̂,h∗

∥∥∥
w
≤
∥∥∥Dγ̂,h∗ −D

γ̂,ĥ

∥∥∥
w
+
∥∥∥D̂

γ̂,ĥ −D
γ̂,ĥ

∥∥∥
w
+
∥∥∥D̂

γ̂,ĥ

∥∥∥
w
.
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By the definition of γ̂ in (1.9), we have

∥∥∥D̂
γ̂,ĥ

∥∥∥
w
≤
∥∥∥D̂

γ∗,ĥ

∥∥∥
w
+op (αn)≤

∥∥∥D̂
γ∗,ĥ −D

γ∗,ĥ

∥∥∥
w
+
∥∥∥D

γ∗,ĥ −Dγ∗,h∗
∥∥∥

w
+op (αn) .

Combining the above two inequalities together, we obtain that

∥∥∥Dγ̂,h∗

∥∥∥
w
≤ 2sup

γ∈Γ

∥∥∥D
γ,ĥ −Dγ,h∗

∥∥∥
w
+2sup

γ∈Γ

∥∥∥D̂
γ,ĥ −D

γ,ĥ

∥∥∥
w
+op (αn) = Op

(
b2

1 + α̃n

)
. (A.5)

In particular, the above quantity is op(1). Because Γ is compact, and
∥∥D·,h∗

∥∥
w is continuous

and has a unique minimizer γ∗ (Corollary 1.2), for any ε > 0 there exists δ > 0 such that

∥γ − γ∗∥2 > ε =⇒
∥∥Dγ,h∗

∥∥
w > δ . Therefore, P(∥γ̂ − γ∗∥2 > ε) ≤ P(

∥∥Dγ,h∗
∥∥

w > δ ) = o(1).

This proves that γ̂ is a consistent estimator.

Step 3. (Convergence rate of γ̂ .) Since γ̂ is consistent, we can Taylor expand Dγ̂,h∗ around γ∗.

Together with the reverse triangle inequality and the fact that Dγ∗,h∗ = 0, the expansion gives that

∥∥Dγ̂,h∗
∥∥

w =
∥∥∇γDγ∗,h∗(γ̂ − γ

∗)+(γ̂ − γ
∗)′∇2

γDγ̃,h∗(γ̂ − γ
∗)
∥∥

w

≥
∥∥∇γDγ∗,h∗(γ̂ − γ

∗)
∥∥

w −∥γ̂ − γ
∗∥2

2

∫ 1

0

∫
E

∥∥∇
2
γDγ̃,h∗(u,e)

∥∥
2w(e,u)dedu

≥
∥∥∇γDγ∗,h∗(γ̂ − γ

∗)
∥∥

w +O
(
∥γ̂ − γ

∗∥2
2

)
,

where γ̃ is some point on the line segment connecting γ̂ and γ∗ and the last line follows from

Assumption 1.10(iii) that
∥∥∇2

γDγ̃,h∗(u,e)
∥∥

2 is bounded. We claim that there exists a universal

constant C > 0 such that

∥∇γDγ∗,h∗ζ
∥∥

w ≥C∥ζ∥, for all ζ ∈ RdΓ. (A.6)
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If this claim is true, then by Equation (A.5), we obtain a bound on the convergence rate of γ̂:

∥γ̂ − γ
∗∥2 = Op

(
b2

1 + α̃n

)
.

The remaining part of this step is devoted to the proof of (A.6). Suppose that claim is

false, then for each integer k ≥ 1, there exists ζk ∈ RdΓ such that ∥∇γDγ∗,h∗ζk
∥∥

w < 1/k∥ζk∥.

Without loss of generality, we can assume ∥ζk∥= 1 (or simply redefine the sequence as ζk/∥ζk∥).

By the Bolzano–Weierstrass theorem, the sequence {ζk} has a convergent subsequence. Without

loss of generality, we assume {ζk} itself is convergent with the limit denoted by ζ∞. Then it

must be the case that ∥∇γDγ∗,h∗ζ∞

∥∥
w = 0. Since ∇γDγ∗,h∗ is a continuous function, the previous

equation implies that ∇γDγ∗,h∗ζ∞ = 0. This violates Assumption 1.10(iv) that ∇γDγ∗,h∗ is a

vector of linearly independent functions.

Step 4. (Stochastic equicontinuity of the criterion function.) Let γn
p→ γ∗ be such that∥γn − γ∗∥=

Op(b2
1 + α̃n). We want to find the asymptotic order of the term ∥D̂

γn,ĥ
−D

γn,ĥ
− D̂γ∗,h∗∥w, which

is bounded by

sup
e∈E ,u∈(0,1)

∣∣∣D̂
γn,ĥ

(e,u)−D
γn,ĥ

(e,u)− (D̂γ∗,h∗(e,u)−Dγ∗,h∗(e,u))
∣∣∣≤ I+ II,

where

I = sup
e∈E ,u∈(0,1)

∣∣∣F̂−
Y |T,R(gγn(ĥ0(v),e)|ĥ0(v), r̄)−F−

Y |T,R(gγn(ĥ0(v),e)|ĥ0(v), r̄)

−
(

F̂−
Y |T,R(gγ∗(h∗0(v),e)|h∗0(v), r̄)−F−

Y |T,R(gγ∗(h∗0(v),e)|h∗0(v), r̄)
)∣∣∣,
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and

II = sup
e∈E ,u∈(0,1)

∣∣∣F̂+
Y |T,R(gγn(ĥ1(v),e)|ĥ1(v), r̄)−F−

Y |T,R(gγn(ĥ1(v),e)|ĥ1(v), r̄)

−
(

F̂+
Y |T,R(gγ∗(h∗1(v),e)|h∗1(v), r̄)−F+

Y |T,R(gγ∗(h∗1(v),e)|h∗1(v), r̄)
)∣∣∣.

By symmetry, we only need to study the term I. The uniform asymptotic linear representation of

the LLR estimators gives a bias-variance decomposition that

I ≤ I.1+ I.2+Op

(
b3

1 + | logb1|/nb2
1

)
,

where

I.1 = b2
1

(
µ0(gγn(ĥ0(v),e), ĥ0(v))−µ0(gγ∗(h∗0(v),e),h

∗
0(v))

)
,

I.2 = sup
e∈E ,u∈[0,1]

∣∣∣ 1
nb2

1

n

∑
i=1

ι
′
Ξ0(ĥ0(v))−1s0(Yi,Ti,Ri;gγn(ĥ0(v),e), ĥ0(v))

− ι
′
Ξ0(h∗0(v))

−1s0(Yi,Ti,Ri;gγ∗(h∗0(v),e),h
∗
0(v))

∣∣∣.
By the smoothness of µ0 (Step 1) and gγ (Assumption 1.10), we can bound the term I.1 by

I.1 ≤Cb2
1(
∥∥γn − γ

∗∥∥
2 +∥ĥ−h∗∥∞) = Op(b4

1 +b2
1α̃n).

For the term I.2, consider the decomposition that I.2 ≤ I.2.1+ I.2.2, where

I.2.1 = sup
e∈E ,u∈[0,1]

∣∣∣ι ′Ξ0(ĥ0(v))−1 1
nb2

1

n

∑
i=1

s0(Yi,Ti,Ri;gγn(ĥ0(v),e), ĥ0(v))

− s0(Yi,Ti,Ri;gγ∗(h∗0(v),e),h
∗
0(v))

∣∣∣,
I.2.2 = sup

e∈E ,u∈[0,1]

∣∣∣ι ′(Ξ0(ĥ0(v))−1 −Ξ0(h∗0(v))
−1
)

1
nb2

1

n

∑
i=1

s0(Yi,Ti,Ri;gγ∗(h∗0(v),e),h
∗
0(v))

∣∣∣.
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As mentioned in Step 1, we know that
∥∥∥Ξ(t)−1

∥∥∥
2

is bounded for t ∈ [t ′0, t
′′
0 ] by Lemma 2.1 in

Chapter 2 of this dissertation. Applying the mean value theorem, we obtain that

I.2.1 ≤C(I.2.1.1+ I.2.1.2+ I.2.1.3)

where

I.2.1.1 = sup
y∈R,t∈[t ′0,t ′′0 ]

∥∥∥∥∥ 1
nb2

1

n

∑
i=1

∂

∂y
s0(Yi,Ti,Ri;y, t)

∥∥∥∥∥
2

∥∥∇γgγ∗
∥∥

∞

∥∥γn − γ
∗∥∥

2 ,

I.2.1.2 = sup
y∈R,t∈[t ′0,t ′′0 ]

∥∥∥∥∥ 1
nb2

1

n

∑
i=1

∂

∂y
s0(Yi,Ti,Ri;y, t)

∥∥∥∥∥
2

∥∥∥∥ ∂

∂T
gγ∗

∥∥∥∥
∞

∥ĥ−h∗∥∞,

I.2.1.3 = sup
y∈R,t∈[t ′0,t ′′0 ]

∥∥∥∥∥ 1
nb2

1

n

∑
i=1

∂

∂ t
s0(Yi,Ti,Ri;y, t)

∥∥∥∥∥
2

∥ĥ−h∗∥∞.

In Lemma A.7, we show that the following two terms are of order Op

(√
logn/(nb4

1)

)
:

sup
y∈R,t∈[t ′0,t ′′0 ]

∣∣∣∣∣ 1
nb2

1

n

∑
i=1

∂

∂y
s(Yi,Ti,Ri;y, t)

∣∣∣∣∣ , sup
y∈R,t∈[t ′0,t ′′0 ]

∣∣∣∣∣ 1
nb2

1

n

∑
i=1

∂

∂ t
s(Yi,Ti,Ri;y, t)

∣∣∣∣∣ .
Because

∥∥∇γgγ∗
∥∥

∞
and

∥∥∂gγ∗/∂T
∥∥

∞
are finite, we know that

I.2.1 = Op

(√
logn/(nb4

1)

)
× (
∥∥γn − γ

∗∥∥
2 +∥ĥ−h∗∥∞) = Op

(√
logn/(nb4

1)α̃n

)
.

Applying the mean value theorem to I.2.2, we obtain that

I.2.2 ≤ sup
t∈[t ′0,t ′′0 ]

∣∣∣∣ι ′ ∂

∂ t
Ξ0(t)−1

∣∣∣∣ sup
y∈R,t∈[t ′0,t ′′0 ]

∥∥∥∥∥ 1
nb2

1

n

∑
i=1

s0(Yi,Ti,Ri;y, t)

∥∥∥∥∥
2

∥ĥ−h∗∥∞.
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In Lemma A.8, we show that

sup
y∈R,t∈[t ′0,t ′′0 ]

∥∥∥∥∥ n

∑
i=1

s0(Yi,Ti,Ri;y, t)/(nb2
1)

∥∥∥∥∥
2

= Op

(√
logn/(nb2

1)

)
.

Therefore, I.2.1 asymptotically dominates I.2.2. Hence, the term I is of the following order:

I = Op

((
b2

1 +
√

logn/(nb4
1)

)
α̃n

)
= Op(αn).

Based on the same argument, the above asymptotic order also applies to the term II. Thus, we

have the following stochastic equicontinuity result:

∥D̂
γn,ĥ

−D
γn,ĥ

− D̂γ∗,h∗∥w = Op(αn). (A.7)

Step 5. (Linearization of the criterion function.) Let ∂
[ĥ−h∗]
h Dγ,h∗(e,u) be the Fréchet derivative

of Dγ,h(e,u) with respect to h at h∗, in the direction of h−h∗. That is,

∂
[ĥ−h∗]
h Dγ,h∗(e,u) =

∫ u

0
(φ−

γ (e,v)−φ
+
γ (e,v))(ĥ0(v)−h∗0(v))dv,

where

φ
−
γ (e,v) =

∂

∂Y
F−

Y |T,R(gγ(h∗0(v),e)|h∗0(v), r̄)
∂

∂T
gγ(h∗0(v),e)+

∂

∂T
F−

Y |T,R(gγ(h∗0(v),e)|h∗0(v), r̄),

φ
+
γ (e,v) =

∂

∂Y
F+

Y |T,R(gγ(h∗1(v),e)|h∗1(v), r̄)
∂

∂T
gγ(h∗1(v),e)+

∂

∂T
F+

Y |T,R(gγ(h∗1(v),e)|h∗1(v), r̄).

It is straightforward to see that
∥∥∥∥∂

[ĥ−h∗]
h Dγ,h∗

∥∥∥∥
∞

= O(∥ĥ− h∗∥∞). Following the same steps

as in Lemma 4 of Torgovitsky [2017], we can show that ∥D
γ,ĥ −Dγ,h∗ − ∂

[ĥ−h∗]
h Dγ,h∗∥w =

100



O(∥ĥ−h∗∥2
∞), uniformly over γ ∈ Γ, and

∥∥∥∥∂
[ĥ−h∗]
h Dγn,h∗ −∂

[ĥ−h∗]
h Dγ∗,h∗

∥∥∥∥
w
= O(

∥∥γn − γ
∗∥∥

2 ∥ĥ−h∗∥∞),

for any sequence γn
p→ γ∗. Define

L̂γ(e,u) = D̂γ∗,h∗(e,u)+∇γDγ∗,h∗(e,u)(γ − γ
∗)+∂

[ĥ−h∗]
h Dγ∗,h∗(e,u),

as a linear approximation of D̂
γ,ĥ(e,u) for γ near γ∗. For any sequence∥γn − γ∗∥2 = Op(b2

1+ α̃n),

we have

∥∥∥L̂γn

∥∥∥
w
≤
∥∥∥D̂γ∗,h∗ −Dγ∗,h∗

∥∥∥
w
+
∥∥∇γDγ∗,h∗

∥∥
w

∥∥γn − γ
∗∥∥

2 +O(∥ĥ−h∗∥∞) = Op(b2
1 + α̃n), (A.8)

where the asymptotic order of the first term on the RHS is derived in (A.4). We want to bound the

approximation error from the linearization of the criterion function. By adding and subtracting

terms, we obtain that

∥∥∥L̂γn − D̂
γn,ĥ

∥∥∥
w

≤
∥∥∥D̂γ∗,h∗ − D̂

γn,ĥ
− (Dγ∗,h∗ −D

γn,ĥ
)
∥∥∥+∥∥Dγ∗,h∗ +∇γDγ∗,h∗(γ − γ

∗)−Dγn,h∗
∥∥

w

+

∥∥∥∥Dγn,h∗ +∂
[ĥ−h∗]
h Dγn,h∗ −D

γn,ĥ

∥∥∥∥
w
+

∥∥∥∥∂
[ĥ−h∗]
h Dγ∗,h∗ −∂

[ĥ−h∗]
h Dγn,h∗

∥∥∥∥
w
. (A.9)

The four terms on the RHS of the above inequality can be analyzed as the following. The order

of the first term on the RHS of (A.9) is given by (A.7) in the previous step. The second term is

O(∥γn − γ∗∥2) by the smoothness of Dγ,h∗ . The third term is bounded by

sup
γ∈Γ

∥∥∥∥D
γ,ĥ −Dγ,h∗ −∂

[ĥ−h∗]
h Dγ,h∗

∥∥∥∥
w
= O(∥ĥ−h∗∥2

∞).

The fourth term is O(∥γn − γ∗∥2 ∥ĥ−h∗∥∞). Therefore, the leading term on the RHS of (A.9) is
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the first term, and hence the approximation error from the linearization of the criterion function

is of the following order:

∥∥∥L̂γn − D̂
γn,ĥ

∥∥∥
w
= Op(αn). (A.10)

Step 6. (Minimizer of the linearized criterion function.) Define γ̃ as the minimizer of
∥∥∥L̂γ

∥∥∥
w

.

The first-order condition gives that

∆(γ̃ − γ
∗) =

∫
∇γDγ∗,h∗(e,u)

(
D̂γ∗,h∗(e,u)+∂

[ĥ−h∗]
h Dγ∗,h∗(e,u)

)
w(e,u)dedu,

where

∆ =
∫

∇γDγ∗,h∗(e,u)∇γDγ∗,h∗(e,u)′w(e,u)dedu. (A.11)

By the uniform asymptotic linear representation of the LLR estimators and ĥ, we can write

∫
∇γDγ∗,h∗(e,u)

(
D̂γ∗,h∗(e,u)+∂

[ĥ−h∗]
h Dγ∗,h∗(e,u)

)
w(e,u)dedu

=
1

nb1

n

∑
i=1

(ζ DF
− (Yi,Ti,Ri)+ζ

Q
− (Yi,Ti,Ri))−

1
nb1

n

∑
i=1

(ζ DF
+ (Yi,Ti,Ri)+ζ

Q
+ (Yi,Ti,Ri))

+b2
1(B−−B+)+Op(b3

1)+op(1/
√

nb1).

The terms B− and B+ are deterministic bias terms defined by

B− =
∫

w(e,u)∇γDγ∗,h∗(e,u)
(∫ u

0
µ0(gγ∗(h∗0(v),e),h

∗
0(v))+φ

−
γ∗(e,v)ν0(v)

)
dedu, (A.12)

B+ =
∫

w(e,u)∇γDγ∗,h∗(e,u)
(∫ u

0
µ1(gγ∗(h∗1(v),e),h

∗
1(v))+φ

+
γ∗(e,v)ν1(v)

)
dedu. (A.13)

The functions ζ DF
− and ζ DF

+ represent stochastic terms from the LLR estimation of the conditional
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distribution FY |T,R. They are defined by

ζ
DF
− (Y,T,R)

=
1
b1

∫
E

∫ 1

0
w(e,u)∇γDγ∗,h∗(e,u)

∫ u

0
ι
′
Ξ0(h∗0(v))

−1s0(Y,T,R,gγ∗(h∗0(v),e),h
∗
0(v))dvdedu

=
∫
E

∫ 1

0
w(e,u)∇γDγ∗,h∗(e,u)

∫ (T−t ′0)/b1

(T−h∗0(u))/b1

ι
′
Ξ0(T +b1v)−1(1,v,(R− r̄)/b1)

′

× K̃Y (Y,T,R;gγ(T +b1v,e))kT (v)k−R ((R− r̄)/b1)((h∗0)
−1)′(T +b1v)dv,

and

ζ
DF
+ (Y,T,R)

=
1
b1

∫
E

∫ 1

0
w(e,u)∇γDγ∗,h∗(e,u)

∫ u

0
ι
′
Ξ1(h∗1(v))

−1s1(Yi,Ti,Ri,gγ∗(h∗1(v),e),h
∗
1(v))dvdedu

=
∫
E

∫ 1

0
w(e,u)∇γDγ∗,h∗(e,u)

∫ (T−t ′1)/b1

(T−h1(u))/b1

ι
′
Ξ1(T +b1v)−1(1,v,(r− r̄)/b1)

′

× K̃Y (Y,T,R;gγ∗(T +b1v,e))kT (v)k+R ((R− r̄)/b1)((h∗0)
−1)′(T +b1v)dv.

In the above notations, k−R (x) = kR(x)⊮{x < 0} and k+R (x) = kR(x)⊮{x ≥ 0}. Similarly define

k−Q,0(x) = kQ,0(x)⊮{x < 0} and k+Q,1(x) = kQ,1(x)⊮{x ≥ 0}. The functions ζ
Q
− and ζ

Q
+ represent

stochastic terms from the nonparametric estimation of the conditional quantile function h∗. They

are defined by

ζ
Q
− (T,R) =

∫
E

∫ 1

0
w(e,u)∇γDγ∗,h∗(e,u)

∫ u

0
φ
−
γ∗(e,v)q0(T,R;v)k−Q,0

(
(R− r̄)/b1

)
dvdedu,

ζ
Q
+ (T,R) =

∫
E

∫ 1

0
w(e,u)∇γDγ∗,h∗(e,u)

∫ u

0
φ
+
γ∗(e,v)q1(T,R;v)k+Q,1

(
(R− r̄)/b1

)
dvdedu.

By Fubini’s theorem, we have

E[ζ DF
± (Y,T,R)|T,R] = E[ζ Q

± (T,R))|T,R] = 0.
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Notice that ((h∗0)
−1)′(·) = f−T |R(·|r̄) and ((h∗1)

−1)′(·) = f+T |R(·|r̄). The variance matrix can be

computed as follows, where to save space, we use the notation of squaring a vector to mean the

tensor product of that vector with itself.

E
[
(ζ DF

− (Y,T,R)+ζ
Q
− (T,R))⊗ (ζ DF

− (Y,T,R)+ζ
Q
− (T,R))

]
=
∫
Y ×[t ′0,t

′′
0 ]×[r0,r̄]

(∫
E

∫ 1

0
w(e,u)∇γDγ∗,h∗(e,u)

∫ (t−t ′0)/b1

(t−h0(u))/b1

ι
′
Ξ0(t +b1v)−1(1,v,(r− r̄)/b1)

′

× K̃Y (y, t,r;gγ∗(t +b1v,e))kT (v)k−R ((r− r̄)/b1) f−T |R(t +b1v|r̄)dv,

+
∫ u

0
φ
−
γ∗(e,v)q0(t,r;v)k−Q,0

(
(r− r̄)/b1

)
dvdedu

)2

f−Y,T,R(y, t,r)dydtdr,

where f±Y,T,R is defined analogously as f±T |R and F±
Y |T,R. Applying the change of variables

r̃ = (r− r̄)/b1, we obtain that the above matrix is equal to b1 times the matrix

∫
Y ×[t ′0,t

′′
0 ]×[−1,0]

(∫
E

∫ 1

0
w(e,u)∇γDγ∗,h∗(e,u)

∫ (t−t ′0)/b1

(t−h0(u))/b1

ι
′
Ξ0(t +b1v)−1(1,v, r̃)′

× K̃Y (y, t, r̄+b1r̃;gγ∗(t +b1v,e))kT (v)k−R (r̃) f−T |R(t +b1v|r̄)dv

+
∫ u

0
φ
−
γ∗(e,v)q0(t, r̄+b1r̃;v)k−Q,0 (r̃)dvdedu

)2

f−Y,T,R(y, t, r̄+b1r̃)dydtdr̃.

For any t ∈ [t ′0 + b1, t ′′0 − b1], we have Ξ0(t) = f−T,R(t, r̄)Ω̄0 with Ω̄0 =
∫

xxxxxx′k0(xxx)dx1dx2. By

letting n → ∞ (so that b1 → 0) and using the continuity of the relevant functions and the

dominated convergence theorem, we know that the above matrix is asymptotically equivalent to

Σ− =
∫ (∫

E

∫ 1

0
w(e,u)∇γDγ∗,h∗(e,u)

(
ι
′
Ω̄

−1
0 (1,0, r̃)′

(
1{y ≤ gγ∗(t,e)}

−F−
Y |T,R(gγ∗(t,e)|t, r̄)

)
k−R (r̃)/ fR(r̄)

+
∫ u

0
φ
−
γ∗(e,v)q0(t, r̄;v)k−Q,0 (r̃)dv

)
dedu

)2

f−Y,T,R(y, t, r̄)dydtdr̃. (A.14)
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In particular, we have used the following convergence result in the above expression:

KY ((y− y′)/b1)→ 1{y′ ≤ y},

K̃Y (y, t, r̄+b1r̃;gγ∗(t +b1v,e))→ 1{y ≤ gγ∗(t,e)}−F−
Y |T,R(gγ∗(t,e)|t, r̄).

The above derivation shows that

E
[
(ζ DF

− (Y,T,R)+ζ
Q
− (T,R))⊗ (ζ DF

− (Y,T,R)+ζ
Q
− (T,R))

]
∼ b1Σ−.

Similarly, we can show that

E
[
(ζ DF

+ (Y,T,R)+ζ
Q
+ (T,R))⊗ (ζ DF

+ (Y,T,R)+ζ
Q
+ (T,R))

]
∼ b1Σ+,

where

Σ+ =
∫ (∫

E

∫ 1

0
w(e,u)∇γDγ∗,h∗(e,u)

(
ι
′
Ω̄

−1
1 (1,0, r̃)′

(
1{y ≤ gγ∗(t,e)}

−F+
Y |T,R(gγ∗(t,e)|t, r̄)

)
k+R (r̃)/ fR(r̄)

+
∫ u

0
φ
+
γ∗(e,v)q1(t, r̄;v)k+Q,1 (r̃)dv

)
dedu

)2

f+Y,T,R(y, t, r̄)dydtdr̃, (A.15)

and Ω̄1 =
∫

xxxxxx′k1(xxx)dx1dx2. The terms ζ DF
− (Y,T,R) and ζ

Q
− (T,R) contain the factor 1{R < 0}

while the terms ζ DF
+ (Y,T,R) and ζ

Q
+ (T,R) contain the factor 1{R ≥ 0}. Hence, we can compute

the variance matrix of their sum as

var
(
(ζ DF

− (Y,T,R)+ζ
Q
− (T,R))− (ζ DF

+ (Y,T,R)+ζ
Q
+ (T,R))

)
= Σ−+Σ+.

Since Σ− and Σ+ do not vary with n, Chebyshev’s inequality implies that the following term is
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Op

(
1/
√

nb1

)
:

1
nb1

n

∑
i=1

(
ζ

DF
− (Yi,Ti,Ri)+ζ

Q
− (Ti,Ri)

)
− 1

nb1

n

∑
i=1

(
ζ

DF
+ (Yi,Ti,Ri)+ζ

Q
+ (Ti,Ri)

)
.

Moreover, E is compact and the relevant functions in the expressions of ζ DF
± and ζ

Q
± are bounded

(Assumptions 1.8, 1.9, 1.10, and 1.13). We can apply the Lyapnov’s central limit theorem (for

example, Theorem 5.11 in White [2001]) to obtain that

(√
nb1(Σ−+Σ+)

−1/2
)( 1

nb1

n

∑
i=1

(
ζ

DF
− (Yi,Ti,Ri)+ζ

Q
− (Ti,Ri)

)
− 1

nb1

n

∑
i=1

(
ζ

DF
+ (Yi,Ti,Ri)+ζ

Q
+ (Ti,Ri)

))
d→ N(0, IIIdΓ

).

Therefore, we obtain, for γ̃ , the convergence rate: ∥γ̃ − γ∗∥2 = Op

(
b2

1 +1/
√

nb1

)
, and asymp-

totic normality:

(√
nb1(Σ−+Σ+)

−1/2
)
(∆(γ̃ − γ

∗)−b2
1(B−−B+))

d→ N(0, IIIdΓ
), (A.16)

under the condition that nb7
1 → 0 (Assumption 1.12).

Step 7. (Asymptotic normality of γ̂ .) By Equation (A.10), we can apply the triangle inequality

repeatedly and obtain that

∥∥∥L̂γ̂

∥∥∥
w
≤
∥∥∥Q̂

γ̂,ĥ

∥∥∥
w
+Op(αn)≤

∥∥∥Q̂
γ̃,ĥ

∥∥∥
w
+Op(αn)≤

∥∥∥L̂γ̃

∥∥∥
w
+Op(αn),

where the second inequality uses the definition of γ̂ in (1.9). Squaring the above inequality and

106



using (A.8) to bounded ∥L̂γ̃∥w, we obtain that

∥∥∥L̂γ̂

∥∥∥2

w
≤
∥∥∥L̂γ̃

∥∥∥2

w
+Op(α

2
n )+Op(αnα̃n)≤

∥∥∥L̂γ̃

∥∥∥2

w
+Op(αnα̃n)

=
∥∥∥L̂γ̃

∥∥∥2

w
+Op

((
b2

1 +
√

logn/(nb4
1)

)(
b4

1 +n−1b−7/6−2ε̄/5
1

))
.

Thus, we have

∥∥∥L̂γ̂

∥∥∥2

w
−
∥∥∥L̂γ̃

∥∥∥2

w
= Op

(
b6

1 +n−1b5/6−2ε̄/5
1 +b2

1

√
logn/n+

√
lognn−3/2b

−3 1
6−2ε̄/5

1

)
.

We want to show that the four terms inside the Op-notation in the above equation is o(1/(nb1)).

Both the terms b6
1 and b2

1

√
logn/n are o(1/(nb1)) under Assumption 1.12(ii). The term

n−1b5/6−2ε̄/5
1 is o(1/(nb1)) since b1 = o(1). For the fourth term, we have

√
lognn−3/2b

−3 1
6−2ε̄/5

1 = o(1/(nb1)) ⇐⇒ nb
4 1

3+ε̄

1 b−ε̄/5
1 / logn → ∞,

where the statement on the RHS is true by Assumption 1.12(iii). The above derivations show that

∥∥∥L̂γ̂

∥∥∥2

w
−
∥∥∥L̂γ̃

∥∥∥2

w
= op(b2

1 +1/(nb1)).

By adding and subtracting (γ̃ − γ∗)∇γDγ∗,h∗ , we obtain that

∥∥∥L̂γ̂

∥∥∥2

w
=
∥∥∥L̃γ̂

∥∥∥2

w
+
∥∥(γ̂ − γ̃)∇γDγ∗,h∗

∥∥2
w +2(γ̂ − γ̃)

∫
L̃γ̃(e,u)∇γDγ∗,h∗(e,u)w(e,u)dedu.

The last term (the innner product term) above is zero because L̃γ̃ is orthogonal to ∇γDγ∗,h∗ from

the projection perspective. This can also be verified by using the definition of γ̃ . Hence, we

have
∥∥(γ̂ − γ̃)∇γDγ∗,h∗

∥∥2
w = op(1/(nb1)). By the same argument as in Step 3, we can show that

∥γ̂ − γ̃∥2 = op(1/
√

nb1). Therefore, by (A.16) and Slutsky’s theorem, we obtain the desired
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asymptotic distribution of γ̂:

(√
nb1(Σ−+Σ+)

−1/2
)
(∆(γ̂ − γ

∗)−b2
1(B−−B+))

=
(√

nb1(Σ−+Σ+)
−1/2

)
(∆(γ̃ − γ

∗)−b2
1(B−−B+))+op(1)

d→ N(0, IIIdΓ
).

Proof of Proposition 1.1. We only prove the results for ĥ0(r̄, ·) since the results for ĥ1(r̄, ·) can

be proved analogously. For part (i) of Assumption 1.13, we can set the partition Pn
0 to be the

class of intervals {[u j,u j+1] : j = 0, · · · ,Jn}. The estimator ĥ0(r̄, ·) is a linear function within

each interval and hence is contained in the class H n
0 (Pn

0 ).

For part (ii), notice that, under Assumption 1.9(i), the estimator ĥ0(r̄,u0) and ĥ0(r̄,uJn+1)

converge to t ′0 and t ′′0 , respectively, at the 1/n rate. Therefore, we can replace ĥ0(r̄,u0) by t ′0 and

ĥ0(r̄,uJn+1) by t ′′0 without affecting the asymptotics. Let h̃0(r̄,u) denote the solution of (1.10)

at given u. The uniform asymptotic linear representation for ĥ0(r̄,u),u ∈ (0,1) follows from

Lemma 3 in the Appendix of Dong et al. [2021], which is a slight modification of Theorem 1.2

of Qu and Yoon [2015]. Then we can use Step 2 in the proof of Theorem 2 in Qu and Yoon

[2015] to show that the error induced by linear interpolation is asymptotically negligible.

The uniform convergence rate in Part (iii) of Assumption 1.13 can be shown by using

the uniform asymptotic linear representation. Since ν0 is bounded, the bias term is O(b2
1). In

Lemma A.9, we show that the stochastic term is satisfies

sup
u∈[0,1]

∣∣∣∣∣ 1
nb1

n

∑
i=1

q0(Ti,Ri;u)kQ,0

(
Ri − r̄

b1

)
1{Ri < r̄}

∣∣∣∣∣= Op

(√
logn/nb1

)
.

This proves the desired result.
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A.2.2 Uniform convergence rates and the empirical process theory

Below are some basic concepts and results from the empirical process theory which are

used to prove several uniform convergence results.

Let F be a class of uniformly bounded measurable matrix-valued functions, that is, there

exists M > 0 such that, for all f ∈ F , ∥ f∥2 ≤ M. Let N(F ,P,ε) be the ε-covering number

of the metric space (F ,L2(P)), that is, N(F ,P,ε) is defined as the minimal number of open

∥·∥L2(P)-balls of radius ε and centers in F required to cover F .

We say that a uniformly bounded function class F is Euclidean if there exists A1,A2 > 0

(that only depend on the uniform bound) such that for every probability measure P and every

ε ∈ (0,1], N(F ,P,ε)≤ A1/εA2 . We say that a function class F is log-Euclidean with coefficient

ρ ∈ (0,1) if there exists A > 0 (that only depends on the uniform bound) such that for every

probability measure P and every ε ∈ (0,1], logN(F ,P,ε)≤ A/ε2ρ .

The above definition of Euclidean classes is introduced by Nolan and Pollard [1987].

The same concept is also studied by Giné and Guillou [1999], but they refer to what we call

“Euclidean” as “VC.” There is a slight difference that Nolan and Pollard [1987] use the L1-norm

while Giné and Guillou [1999] use the L2-norm. We ignored the envelope in their definition

since we only work with uniformly bounded F . The following two lemmas demonstrates how

to generate function classes that are Euclidean and log-Euclidean.

Lemma A.2. Let F1 and F2 be uniformly bounded and Euclidean classes of functions. The

following classes of functions are also uniformly bounded and Euclidean.

(i) F1 ⊕F2 = { f1 + f2 : f1 ∈ F1, f2 ∈ F2}.

(ii) F1F2 = { f1 · f2 : f1 ∈ F1, f2 ∈ F2}.

(iii) {E[ f1(·)|X ] : f1 ∈ F1}.

(iv)
{

k
(
(·− x)/b

)
: x ∈ R,b > 0

}
, where k : R→ R is a function of bounded variation.
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Proof of Lemma A.2. See Appendix B in Chapter 2 of this dissertation.

Lemma A.3. Let F1 be a uniformly bounded and Euclidean class of functions and F2 be

a uniformly bounded and log-Euclidean class of functions with coefficient ρ . Then F1F2 is

uniformly bounded and log-Euclidean with coefficient ρ + ε for any ε > 0.

The following two lemmas give the asymptotic order of the supremum of empirical

processes generated by Euclidean and log-Euclidean classes, respectively.

Proof of Lemma A.3. This follows from the definition of Euclidean and log-Euclidean classes.

Lemma A.4. Let X1, · · · ,Xn be an iid sample of a random vector X in Rd . Let Gn be a sequence

of classes of measurable real-valued functions defined on Rd . Assume that there is a fixed

uniformly bounded Euclidean class F such that Fn ⊂ F for all n. Let σ2
n ≥ sup f∈Fn

E[ f (X)2].

Then

sup
f∈Fn

∣∣∣∣∣ n

∑
i=1

( f (Xi)−E f (Xi))

∣∣∣∣∣= Op

(√
nσ2

n | logσn|+ | logσn|
)
.

In particular, if nσ2
n/| logσn| → ∞, then the above rate simplifies to Op

(√
nσ2

n | logσn|
)
.

Proof of Lemma A.4. This is Lemma 2.1 in Chapter 2 of this dissertation.

Lemma A.5. Let X1, · · · ,Xn be an iid sample of a random vector X in Rd . Let Fn be a sequence

of classes of measurable real-valued functions defined on Rd . Assume that there is a fixed

uniformly bounded log-Euclidean class F with coefficient ρ such that Fn ⊂ F for all n. Let

σ2
n = sup f∈Fn

E[ f (X)2]. Then

sup
f∈Fn

∣∣∣∣∣ n

∑
i=1

( f (Xi)−E f (Xi))

∣∣∣∣∣= Op

(√
nσ

1−ρ
n +nρ/(1+ρ)

)
.
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Proof of Lemma A.5. Let M > 0 be the uniform bound of F . Since F is log-Euclidean with

coefficient ρ , there exists A > 0 such that logN(F ,Pn,ε)≤ A/ερ for every ε ∈ (0,1], where Pn

is the empirical measure. Since each Fn is contained in F , the above result also holds when

F is replaced by Fn. Denote Radi,1 ≤ i ≤ n, as a sequence of iid Rademacher variables. By

Equation (3.19) in Koltchinskii [2011] (which is a result of Theorem 3.12 in the same book),

there exists a universal constant C > 0 such that

E sup
f∈F

∣∣∣∣∣ n

∑
i=1

Radi f (Xi)

∣∣∣∣∣≤CAρMρ
√

nσ
1−ρ
n ∨CA2ρ/(ρ+1)Mnρ/(1+ρ)

= Op

(√
nσ

1−ρ
n +nρ/(1+ρ)

)
.

Then the desired result follows from the usual symmetrization argument (for example, Theorem

2.1 in Koltchinskii [2011]) and Chebyshev’s inequality.

The following three lemmas give uniform convergence results that are used in the proof

of Theorem 1.2.

Lemma A.6. Under the assumptions of Theorem 1.2, the following term is Op(α̃n):

sup
e∈E ,u∈[0,1],γ∈Γ,h0∈H0(P

n
0 )

∣∣∣∣∣ 1
nb2

1

n

∑
i=1

∫ u

0
ι
′
Ξ0(h0(v))−1s0(Yi,Ti,Ri;gγ(h0(v), r̄,e),h0(v))dv

∣∣∣∣∣ .
Proof of Lemma A.6. Since Pn

0 is a finite partition, we can without loss of generality assume

that Pn
0 only contains the whole interval [t ′0, t

′′
0 ] so that there is effectively no partition. To simply

notation, we omit the term Pn
0 . By the change of variables ṽ = (Ti − h0(v))/b1 and Fubini’s
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theorem, we have

∣∣∣ 1
nb2

1

n

∑
i=1

∫ u

0
ι
′
Ξ0(h0(v))−1s0(Yi,Ti,Ri;gγ(h0(v), r̄,e),h0(v))dv

∣∣∣
≤
∫ ∣∣∣ 1

nb1

n

∑
i=1

ι
′
Ξ0(Ti +b1ṽ)−1s0(Yi,Ti,Ri;gγ(Ti +b1ṽ, r̄,e),Ti +b1ṽ)

× (h−1
0 )′(Ti +b1ṽ)1{(Ti −h0(u))/b1 < ṽ < (Ti − t ′0)/b1}dṽ

∣∣∣
≤ sup

ṽ∈(−1,1)

∣∣∣ 1
nb1

n

∑
i=1

ι
′
Ξ0(Ti +b1ṽ)−1s0(Yi,Ti,Ri;gγ(Ti +b1ṽ, r̄,e),Ti +b1ṽ)

× (h−1
0 )′(Ti +b1ṽ)1{(Ti −h0(u))/b1 < ṽ < (Ti − t ′0)/b1}

∣∣∣,
where, in the last inequality, the supremum is taken over ṽ ∈ (−1,1) because of the support of

kT . Define the following function of (Y,T,R) indexed by (v,u,e,γ,h0):

ψn(Y,T,R;v,u,e,γ,h0) = ι
′
Ξ0(T +b1v)−1s0(Y,T,R;gγ(T +b1v, r̄,e),T +b1v)

× (h−1
0 )′(T +b1v)1{(T −h0(u))/b1 < v < (T − t ′0)/b1}.

Let Ψn = {ψn(·, ·, ·;v,u,e,γ,h) : v ∈ (−1,1),u ∈ (0,1),e ∈ E ,γ ∈ Γ,h0 ∈ H0}. Our goal is to

use empirical process theory to derive the asymptotic order of

sup
ψn∈Ψn

|
n

∑
i=1

ψn(Y,T,R;v,u,e,γ,h0)|.
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Consider a larger class Ψ as the product Ψ = ΨΞΨY ΨT RΨH0 , where

ΨΞ0 = {T 7→ ι
′
Ξ0(T + v)−1 : v ∈ (−1,1)},

ΨY = {(Y,T,R) 7→ K̃Y (Y,T,R;gγ(T + v, r̄,e),T + v) : v ∈ (−1,1),γ ∈ Γ,e ∈ E },

ΨT R = {(Y,T,R) 7→ (1,v,(R− r̄)/b)′kT (v)k−R ((R− r̄)/b)

×1{T −h0(u)< bv < T − t ′0} : b,u ∈ (0,1),v ∈ (−1,1)},

ΨH0 = {T 7→ (h−1
0 )′(T + v) : h0 ∈ H0,v ∈ (0,1)}.

Notice that in the above definition of ΨΞ0 , ΨY , and ΨH0 , omitting the parameter b does not

change the class under consideration. The class Ψ does not vary with n and Ψn ⊂ Ψ,n ≥ 1. In

the following paragraphs, we show that the classes ΨΞ0 , ΨY , and ΨT R are Euclidean while the

class ΨH0 is log-Euclidean.

For ΨΞ0 , we know that∥Ξ0∥ and ∥Ξ
−1
0 ∥ are uniformly bounded by Lemma 2.1 in Chapter

2 of this dissertation. By the smoothness of f−T,R in Assumption 1.9, the class {T 7→ ι ′Ξ0(T +v) :

v ∈ (−1,1)} is Lipschitz in the parameter v ∈ (−1,1) and hence, by Theorem 2.7.11 in van der

Vaart and Wellner [1996b], has covering numbers bounded by that of one-dimensional intervals.

This implies that {T 7→ ι ′Ξ0(T + v) : v ∈ (−1,1)} is uniformly bounded and Euclidean. Then

by Theorem 3 in Andrews [1994], we know that ΨΞ0 is uniformly bounded and Euclidean.

The class ΨY can be written as ΨY = ΨY 1 +ΨY 2, where

ΨY 1 = {(Y,T ) 7→ KY ((gγ(T + v, r̄,e)−Y )/b) : b,v ∈ (0,1),γ ∈ Γ,e ∈ E },

ΨY 2 = {(Y,T,R) 7→ −E[KY ((gγ(T + v, r̄,e)−Y )/b)|T,R] : b,v ∈ (0,1),γ ∈ Γ,e ∈ E }.

In view of Lemma A.2(i) and (iii), we only need to show that ΨY is Euclidean. The class ΨY is

uniformly bounded by 1. The function KY is increasing since kY is positive. The subgraph class
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of ΨY can be written as

{{(y, t,s) : KY ((gγ(t + v, r̄,e)− y)/b)≤ s} : b,v ∈ (0,1),γ ∈ Γ,e ∈ E }

={{(y, t,s) : gγ(t + v, r̄,e)− y−bK−1(s)≤ 0} : b,v ∈ (0,1),γ ∈ Γ,e ∈ E }.

By Assumption 1.10, the following function class is finite-dimensional:

{(t,y,s) 7→ gγ(t + v, r̄,e)− y−bK−1(s) : b,v ∈ (0,1),γ ∈ Γ,e ∈ E }.

By Lemma 18(ii) in Nolan and Pollard [1987], the subgraph class of ΨY is a polynomial class,

which implies (by Theorem 2.6.7 in van der Vaart and Wellner [1996b]) that ΨY is Euclidean.

For the class ΨT R, notice that the function kT , kR, and the indicator function are all of

bounded variation. The kernel functions kT and kR are supported on [−1,1]. Therefore, the

term (R− r̄)/b is bounded between [−1,1]. By Lemma A.2(ii) and (iv), we know that ΨT R is

uniformly bounded and Euclidean.

Lastly, by Assumption 1.13(i), the class ΨH0 is contained in the class of twice contin-

uously diferentiable functions whose second-order derivatives are Lipschitize continuous. By

the well-known bounds on the entropy of Lipschitz classes (see, for example, Example 5.11

in Chapter 5 of Wainwright [2019]), we know the class ΨH0 is log-Euclidean with coefficient

1/2×1/(2+1) = 1/6. Then by Lemma A.3, we know that Ψ is log-Euclidean with coefficient

1/6+ ε for any small ε > 0.

Next, we want to derive a uniform variance bound for the class Ψ and appeal to Lemma

A.5. By the uniform boundedness of the classes studied above and applying the usual change of

variables, we obtain that

E[ψn(Y,T,R;v,u,e,γ,h0)
2]≤CE[kR((R− r̄)/b1)

2] =Cb1

∫
kR(r̃) fR(r̄+b1r̃)dr̃ = O(b1).
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Lemma A.5 then gives that

sup
ψ∈Ψn

∣∣∣ n

∑
i=1

ψ(Y,T,R;v,u,e,γ,h0)
∣∣∣= Op

(
n1/2b(1−1/6)/2−ε

1 +n1/7
)
,

for any small ε > 0. Notice that, in the rate specified above, the term n1/7 is dominated in view

of Assumption 1.12. Then the desired convergence rate follows from dividing by nb1 on both

sides.

Lemma A.7. Under the assumptions of Theorem 1.2, we have

sup
y∈R,t∈[t ′0,t ′′0 ]

∥∥∥∥∥ 1
nb2

1

n

∑
i=1

∂

∂y
s0(Yi,Ti,Ri;y, t)

∥∥∥∥∥
2

= Op

(√
logn/(nb4

1)

)
,

sup
y∈R,t∈[t ′0,t ′′0 ]

∥∥∥∥∥ 1
nb2

1

n

∑
i=1

∂

∂ t
s0(Yi,Ti,Ri;y, t)

∥∥∥∥∥
2

= Op

(√
logn/(nb4

1)

)
.

Proof of Lemma A.7. The partial derivative of s0 with respect to y is a vector of length three

whose generic element can be denoted by ṡ0(Yi,Ti,Ri;y, t,b1,b2)/b2, where

ṡ0(Y,T,R;y, t) =
(

T − t
b1

)ℓ1
(

R− r̄
b1

)ℓ2
(

kY

(
y−Y

b2

)
−E

[
kY
(
(y−Y )/b2

)
|T,R

])
k0(X(t))

with (ℓ1, ℓ2) = (0,0),(1,0),(0,1). We use the empirical process theory to derive the uniform

convergence rate of the sample average of ṡ0. Recall that the kernel functions kY ,kT , and kR

are of bounded variation. Then by Lemma A.2, we know that the following function class is

uniformly bounded and Euclidean:

{(Y,T,R) 7→ ṡ0(Y,T,R;y, t,b,b′) : y ∈ R, t ∈ [t ′0, t
′′
0 ],b,b

′ > 0}

={(Y,T,R) 7→ ((T − t)/b)ℓ1
(
(R− r̄)/b

)ℓ2

(
kY
(
(y−Y )/b′

)
−E

[
kY
(
(y−Y )/b′

)
|T,R

])
× kT ((T − t)/b)k−R ((R− r̄)/b) : y ∈ R, t ∈ [t ′0, t

′′
0 ],b,b

′ > 0}.
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By the law of iterated expectations and differentiation under the integral, we know that ṡ0 is

centered. By using the fact that kT and kR are supported on [−1,1] and kY is bounded and

applying the standard change of variables, we can bound the variance of ṡ0 by

2∥kY∥2
∞
E
[
kT ((T − t)/b1)

2k−R ((R− r̄)/b1)
2
]
= b2

12∥kY∥2
∞

∫
kT (x1)

2k−R (x2)
2 = O(b2

1),

uniformly over y ∈R and t ∈ [t ′0, t
′′
0 ]. Then by Lemma 2.2, we know that the uniform convergence

rate of the sample average of ṡ0 is Op

(√
nb2

1 logn
)

. Therefore,

sup
y∈R,t∈[t ′0,t ′′0 ]

∥∥∥∥∥ 1
nb2

1

n

∑
i=1

∂

∂y
s0(Yi,Ti,Ri;y, t)

∥∥∥∥∥
2

=
1

nb2
1b2

Op

(√
nb2

1 logn
)
= Op

(√
logn/(nb4

1)

)

under the condition that b1/b2 ∈ [1/C,C] (Assumption 1.12). This proves the first claim of the

lemma. For the second claim, the same argument applies. We just want to point out that kT is

differentiable on the entire real line by Assumption 1.11 even though its support is [−1,1].

Lemma A.8. Under the assumptions of Theorem 1.2, we have

sup
y∈Y ,t∈[t ′0,t ′′0 ]

∣∣∣∣∣ 1
nb2

1

n

∑
i=1

ι
′
Ξ0(t)−1s0(Yi,Ti,Ri;y, t)

∣∣∣∣∣= Op

(√
logn/(nb2

1)

)
,

sup
y∈R,t∈[t ′0,t ′′0 ]

∥∥∥∥∥ 1
nb2

1

n

∑
i=1

s0(Yi,Ti,Ri;y, t)

∥∥∥∥∥
2

= Op

(√
logn/(nb2

1)

)
.

Proof of Lemma A.8. Following the same steps as in the proofs of the previous two lemmas, we

can show that the relevant function classes are uniformly bounded and Euclidean. By the usual

change of variables, we can show that the uniform variance bound is O(b2
1) before taking into

account the factor 1/(nb1) in the two terms. Then the desired results follow from Lemma 2.2.

The details are omitted for brevity.
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Lemma A.9.

sup
u∈[0,1]

∣∣∣∣∣ 1
nb1

n

∑
i=1

q0(Ti,Ri;u)kQ,0

(
Ri − r̄

b1

)
1{Ri < r̄}

∣∣∣∣∣= Op

(√
logn/nb1

)
.

Proof of Lemma A.9. Without loss of generality, let c = 1. Define

ψn(T,R;u) = q0(T,R;u)kQ,0

(
R− r̄

b1

)
1{R < r̄}

=
u−1{T ≤ h∗0(r̄,u)}
fR(r̄) f−T |R(h

∗
0(r̄,u)|r̄)

ι
′
Ω

−1
Q,0(1,(R− r̄)/b1)

′KFS((R− r̄)/b1)

and Ψn = {(T,R) 7→ ψn(T,R;u) : u ∈ [0,1]}. By the law of iterated expectations, ψn is centered.

Let M = supu∈[0,1] | fR(r̄) f−T |R(h
∗
0(r̄,u)|r̄)|. Define a product class Ψ = ΨT ΨR where

ΨT = {(T,R) 7→C(u−1{T ≤ t}) : u ∈ [0,1], t ∈ [t ′0, t
′′
0 ], |C| ≤ M},

ΨR = {(T,R) 7→ ι
′
Ω

−1
Q,0(1,(R− r̄)/b)′KFS((R− r̄)/b) : b > 0}.

The class Ψ does not vary with n, and Ψn ⊂ Ψ,n ≥ 1. The class ΨT is uniformly bounded and

Euclidean since the set of indicator functions 1{T ≤ t}, t ∈ [t ′0, t
′′
0 ] is Euclidean. The class ΨR is

uniformly bounded and Euclidean since KFS is of bounded variation and compactly supported.

By the usual change of variables, we can show that the uniform variance bound for Ψn is O(b1).

Then the desired convergence rate follows from Lemma 2.2.

A.2.3 Covariance Matrix Estimation

In this section, we discuss the estimation of the asymptotic variance matrix of γ̂ , which

involves the estimation of ∆, Σ−, and Σ+. For concreteness, we consider the first-step nonpara-

metric conditional quantile estimation procedure described in Section 1.3.3 and Proposition 1.1.

In the expressions of ∆, Σ−, and Σ+, the functions that require estimation include ∇γDγ∗,h∗ , φ
±
γ∗ ,
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f±Y,T,R, f±T |R, and fR. By definition,

∇γDγ∗(e,u) =
∫ u

0

[
∂

∂Y
F−

Y |T,R(gγ∗(h∗0(r̄,v), r̄,e)|h∗0(r̄,v), r̄)∇γgγ∗(h∗0(r̄,v), r̄,e)

− ∂

∂Y
F+

Y |T,R(gγ∗(h∗1(r̄,v), r̄,e)|h∗1(r̄,v), r̄)∇γgγ∗(h∗1(r̄,v), r̄,e)
]
dv.

In the above quantity, we only need to estimate ∂

∂Y F−
Y |T,R = f±Y |T,R since we already have esti-

mators for γ∗ and h∗. By observing the definition of φ
±
γ∗ , we know that the additional term that

requires estimation is ∂

∂T F±
Y |T,R. To summarize, we want to estimate f±Y,T,R and ∂

∂T F±
Y |T,R. Once

f±Y,T,R is obtained, we can operate to get the marginal and conditional density functions.

For estimation of f±Y,T,R, we can employ the method developed by Cattaneo et al. [2020].

They use the second-order local polynomial regression to estimate the joint density. Due to

the nature of local polynomial regressions, the estimator is boundary adaptive and particularly

suitable for RD designs. To estimate the partial derivative ∂

∂T F±
Y |T,R, we can employ a second-

order local polynomial regression. The procedure is similar to STEP 2 in the construction of γ̂ .

We add two quadratic terms into the minimization problem:

∑
i:Ri<r̄

(
KY

(
y−Yi

b2

)
−a−−a−T (Ti − t)−a−T,2(Ti − t)2 −a−R (Ri − r̄)−a−R,2(Ri − r̄)2

)2

× kT

(
Ti − t

b1

)
kR

(
Ri − r̄

b1

)
.

The minimizer â−T is the estimate of ∂

∂T F−
Y |T,R(y|t, r̄). The estimate of ∂

∂T F+
Y |T,R(y|t, r̄) can be

analogously constructed.

We assume that the resulting estimators f̂±Y,T,R and ∂

∂T F̂±
Y |T,R are uniformly consistent.
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That is,

sup
y,t,r

| f̂±(y, t,r)− f±(y, t,r)|= op(1),

sup
y,t

∣∣∣∣ ∂

∂T
F̂±

Y |T,R(y|t, r̄)−
∂

∂T
F±

Y |T,R(y|t, r̄)
∣∣∣∣= op(1).

Such uniform convergence results can be proved along the lines of, for examples, Fan and Guerre

[2016] and Chapter 2 of this dissertation. The details are omitted here. We can construct the

following distributional estimates:

f̂±T,R(t, r̄) =
∫

f̂±Y,T,R(y, t, r̄)dy,

f̂±Y |T,R(y, t|r̄) = f̂±Y,T,R(y, t, r̄)/ f̂±T,R(t, r̄).

Under the assumption that f±T,R is bounded away from zero, the estimator f̂±Y |T,R(y, t|r̄) is uni-

formly consistent. Let

∆̂ =
∫

w(e,u)
(∫ u

0

[
f̂−Y |T,R(gγ̂(ĥ0(r̄,v), r̄,e)|ĥ0(r̄,v), r̄)∇γgγ̂(ĥ0(r̄,v), r̄,e)

− f̂+Y |T,R(gγ̂(ĥ1(r̄,v), r̄,e)|ĥ1(r̄,v), r̄)∇γgγ̂(ĥ1(r̄,v), r̄,e)
]
dv
)2

dedu.

Under the uniform consistency of f̂±Y |T,R and ĥ and the consistency of γ̂ , we can show that ∆̂ is a

consistent estimator of ∆. For the estimation of Σ−, define

f̂R(r̄) =
∫

f̂±T,R(t, r̄)dt,

f̂±T |R(t|r̄) = f̂±T,R(t, r̄)/ f̂R(r̄),

φ̂
−
γ̂
(e,v) = f̂−Y |T,R(gγ̂(ĥ0(v),e)|ĥ0(v), r̄)

∂

∂T
gγ̂(ĥ0(v),e)+

∂

∂T
F̂−

Y |T,R(gγ̂(ĥ0(v),e)|ĥ0(v), r̄).
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The above estimators are also uniformly consistent. In particular,

sup
e,v

∣∣∣φ̂−
γ̂
(e,v)−φ

−
γ∗(e,v)

∣∣∣= op(1).

Let

Σ̂− =
∫ (∫

E

∫ 1

0
w(e,u)

(∫ u

0

[
f̂−Y |T,R(gγ̂(ĥ0(r̄,v), r̄,e)|ĥ0(r̄,v), r̄)∇γgγ̂(ĥ0(r̄,v), r̄,e)

− f̂+Y |T,R(gγ̂(ĥ1(r̄,v), r̄,e)|ĥ1(r̄,v), r̄)∇γgγ̂(ĥ1(r̄,v), r̄,e)
]
dv
)

(
ι
′
Ω̄

−1
0 (1,0, r̃)′

(
1{y ≤ gγ̂(t,e)}− F̂−

Y |T,R(gγ̂(t,e)|t, r̄)
)

k−R (r̃)/ f̂R(r̄)

+
k−Q,0 (r̃)

c f̂−T,R(t, r̄)

∫ u

0
φ̂
−
γ̂
(e,v)(v−1{t ≤ ĥ0(r̄,v)})dv

)
dedu

)2

f̂−Y,T,R(y, t, r̄)dydtdr̃.

Under the uniform consistency of f̂R, f̂±T,R, f̂±Y |T,R, F̂Y |T,R, f̂±Y,T,R, φ̂
−
γ̂

, and ĥ, and the consistency

of γ̂ , Σ̂− is a consistent estimator of Σ−. The estimation of Σ+ can be performed analogously.
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Appendix B

Appendix for Chapter 2

The proofs for the theorems in the main text are collected in Appendix B.1. Appendix

B.2 contains some preliminary results in empirical process theory.

B.1 Proofs

Proof of Lemma 1. This lemma is almost the same as Lemma 11 in Fan and Guerre [2016]. The

only difference is that in this paper we allow the kernel to diminish at the boundary of the support

but the proof of Fan and Guerre [2016] nonetheless goes through. In fact, following their steps,

we can show that the eigenvalues of Ξ(x,h1) and Ω(x,h1) are larger than

inf
x∈B(0,1)

min
b⊤b=1

b⊤
(∫

rrr(u)rrr(u)⊤w(u)1{u ∈ B(x,λ1)}du
)

b,

which is strictly positive since w > 0 on [−1,1]d .

Proof of Theorem 1. By the standard change of variables and the law of iterated expectations,

we can write

Ξ(x,h1) =
∫

rrr(u)rrr(u)⊤w(u) fX(x+h1u)du,

υυυ(y,x,h1,h2) =
∫

rrr(u)w(u)F̃(y|x+h1u) fX(x+h1u)du,
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where F̃(y|x) = E[K((y−Y )/h2) | X = x]. Because fX is continuously differentiable on X , we

have Ξ(x,h1) = fX(x)Ω(x,h1)+o(1), uniformly over x ∈ X . Applying change of variables and

integration by parts to F̃(y|x+h1u), we have

F̃(y|x+h1u) =
∫

K((y− y′)/h2) f (y′|x+h1u)dy′

=
∫

K(v) f (y−h2v|x+h1u)h2dv

=
∫

k(v)F(y−h2v|x+h1u)dv.

By Assumption Y, F(y|x) restricted to R×X is twice uniformly continuously differentiable.

Then for any y ∈ R, the following expansion holds:

F(y−h2v|x+h1u) = F(y|x+h1u)− ∂

∂y
F(y|x+h1u)h2v+

1
2

∂ 2

∂y2 F(y|x+h1u)h2
2v2

+
1
2

h2
2

(
∂ 2

∂y2 F(ỹ|x+h1u)v2 − ∂ 2

∂y2 F(y|x+h1u)v2

)
,

where ỹ is between y and y−h2v. Therefore,

F̃(y|x+h1u) = F(y|x+h1u)+
h2

2
2

∂ 2

∂y2 F(y|x+h1u)
∫

v2k(v)dv+o(h2
2),

uniformly over y ∈ R and x+h1u ∈ X . The remainder term is uniformly o(h2
2) because ∂ 2

∂y2 F is

a continuous function on the compact set supp(Y,X). Next, by the smoothness of F(y|x) with

respect to x, we have

F(y|x+h1u) = F(y|x)+h1u⊤∇xF(y|x)+
h2

1
2

u⊤[∇⊤
x ∇xF(y|x̃)]u

= rrr(u)⊤H1βββ
∗(y,x)+

h2
1

2
u⊤[∇⊤

x ∇xF(y|x)]u

+
h2

1
2

u⊤
(
[∇⊤

x ∇xF(y|x̃)]u− [∇⊤
x ∇xF(y|x)]u

)
u

= rrr(u)⊤H1βββ
∗(y,x)+

h2
1

2
u⊤[∇⊤

x ∇xF(y|x)]u+o(h2
1), (B.1)
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uniformly over y ∈ R and x,x+ h1u ∈ X . The remainder term is uniformly o(h2
1) because

∇⊤
x ∇xF is assumed to be uniformly continuous on R×X . Similarly, we have

fX(x+h1u) = fX(x)+o(1), (B.2)

∂ 2

∂y2 F(y|x+h1u) =
∂ 2

∂y2 F(y|x)+o(1), (B.3)

uniformly over y ∈ R and x,x+h1u ∈ X . Therefore,

υυυ(y,x,h1,h2) = Ξ(x,h1)H1βββ
∗(y,x)

+
h2

1
2

fX(x)
∫

rrr(u)w(u)u⊤[∇⊤
x ∇xF(y|x)]u1{x+h1u ∈ X }du

+
h2

2
2

∂ 2

∂y2 F(y|x) fX(x)
∫

v2k(v)dv
∫

rrr(u)w(u)1{x+h1u ∈ X }du+o(h2
1 +h2

2),

uniformly over y ∈ R and x ∈ X . Therefore,

H1(β̄ββ (y,x,h1,h2)−βββ
∗(y,x))

=
h2

1
2

Ω(x,h1)
−1

d

∑
ℓ,ℓ′=1

∂ 2

∂xℓ∂xℓ′
F(y|x)

∫
rrr(u)uℓuℓ′w(u)1{x+h1u ∈ X }du

+
h2

2
2

Ω(x,h1)
−1 ∂ 2

∂y2 F(y|x)
∫

v2k(v)dv
∫

rrr(u)w(u)1{x+h1u ∈ X }du+o(h2
1 +h2

2).

Then the first claim of the theorem follows.

When x ∈ X̊h1 , x+ h1u ∈ X for all u ∈ [−1,1]d . In that case, Ω(x,h1) becomes the

identity matrix because wℓ is symmetric and has variance one. Then the second claim of the

theorem follows.

Proof of Lemma 2. Let M > 0 be the uniform bound of G . Notice that each Gn is a uniformly
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bounded (by M) Euclidean class with the same coefficients (A,v). Denote

∆
o
n = sup

f∈Gn

∣∣∣∣∣ n

∑
i=1

Radi f (Xi)

∣∣∣∣∣ ,
where Radi,1 ≤ i ≤ n, is a sequence of iid Rademacher variables. By Proposition 2.1 in Giné

and Guillou [2001], we have for all n ≥ 1,

E∆
o
n ≤C

(
vM log(AM/σn)+

√
v
√

nσ2
n log(AM/σn)

)
= O

(√
nσ2

n | logσn|+ | logσn|
)
.

By the symmetrization result in, for example, Lemma 2.3.1 of van der Vaart and Wellner [1996b],

we know that E∆n ≤ 2E∆o
n = O

(√
nσ2

n | logσn|+ | logσn|
)
. Then the claimed result follows

from the Chebyshev inequality.

Proof of Theorem 2. We proceed with two steps. Recall the expression of H1β̂ββ in Equation (1).

In Step 1, we derive the uniform convergence rate of the numerator υ̂υυ(y,x,h1,h2). In Step 2, we

derive the uniform convergence rate of the denominator Ξ̂(x,h1).

Step 1. To avoid repetition in the proof, we consider a generic element of the vector υ̂υυ(y,x,h1,h2):

υ̂υυπ(y,x,h1,h2) =
1

nhd
1

n

∑
i=1

((Xi − x)/h1)
πK
(

y−Yi

h2

)
w
(

Xi − x
h1

)
,

=
1

nhd
1

n

∑
i=1

K
(

y−Yi

h2

) d

∏
ℓ=1

((Xiℓ− xℓ)/h1)
πℓwℓ

(
Xiℓ− xℓ

h1

)
, (B.4)

where π = (π1, · · · ,πd),πℓ ∈ {0,1},∑πℓ ≤ 1. We want to derive the following uniform conver-

gence rate of υ̂υυℓ(y,x,h1,h2):

sup
y∈R,x∈X

∣∣υ̂υυℓ(y,x,h1,h2)−Eυ̂υυℓ(y,x,h1,h2)
∣∣= Op

(√
| logh1|/(nhd

1)

)
. (B.5)
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By defining

ψn(Y,X ;y,x) = K
(

y−Yi

h2

) d

∏
ℓ=1

((Xiℓ− xℓ)/h1)
πℓwℓ

(
Xiℓ− xℓ

h1

)

and Ψn = {ψn(·, ·;y,x) : y ∈ R,x ∈ X }, we can write the LHS of (B.5) as

sup
ψn∈Ψn

∣∣∣∣∣ 1
nhd

1

n

∑
i=1

(ψn(Yi,Xi;y, t)−Eψn(Yi,Xi;y, t))

∣∣∣∣∣ ,
which can be studied with the empirical process theory introduced previously. Notice that ψn

and Ψn depend on n through the bandwidth h1 and h2.

Consider a larger class Ψ that does not depend on n defined by the following product:

Ψ = ΨY ΨX1ΨX2 · · ·ΨXd ,

where

ΨY = {(Y,X) 7→ K
(
(y−Y )/h

)
: y ∈ R,h > 0},

ΨXℓ
= {(Y,X) 7→

(
(Xℓ− xℓ)/h

)πℓ wℓ

(
(Xℓ− xℓ)/h

)
: x ∈ X ,h > 0}, ℓ= 1, · · · ,d.

For all n ≥ 1, Ψn is a subset of the product class Ψ. Then we want to show that Ψ is uniformly

bounded and Euclidean. If that is true, then we can appeal to Lemma 2.

In view of Lemma B.5, we only need to show that ΨY and ΨXℓ
are uniformly bounded

and Euclidean. The class ΨY is uniformly bounded by 1. The function K is of bounded variation

on R since it is the integral of the integrable function k (Corollary 3.33 in Folland [1999]). Then

by Lemma B.1, we know that ΨY is Euclidean. The class ΨXℓ
is uniformly bounded by ∥wℓ∥∞.

This is because wℓ is support on [−1,1] and hence the term in front of wℓ, (Xℓ− xℓ)/h, cannot

exceed one in magnitude. To show that ΨXℓ
is Euclidean, notice that the function uℓ 7→ uπℓ

ℓ wℓ(uℓ)

is of bounded variation. This is because on the support of wℓ, [−1,1], both uℓ 7→ uπℓ
ℓ and wℓ are
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of bounded variation. Then their product is also of bounded variation (Theorem 6.9, Apostol

[1974]). Then we know ΨXℓ
is Euclidean by appealing to Lemma B.1.

Next, we want to derive a uniform variance bound for each Ψn. By the standard change

of variables, we know that supψn∈Ψn
E[ψn(Y,X ;y,x)2] is bounded by

sup
x∈X

E

[
w
(

X − x
h1

)2
]
≤ sup

x∈X
hd

1

∫
w(u)2 fX(x+h1u)du ≤ hd

1∥ fX∥∞

d

∏
ℓ=1

∥wℓ∥∞
,

where we have used the fact that K ∈ [0,1], and wℓ is supported on [−1,1] and integrates to

1. Therefore, we can define σ2
Ψn

= hd
1∥ fX∥∞ ∏

d
ℓ=1∥wℓ∥∞

as a uniform variance bound for Ψn.

Under the assumption that nhd
1/| logh1| → ∞, we can apply Lemma 2 to the sequence Ψn and

obtain that

sup
ψn∈Ψn

∣∣∣∣∣ 1
nhd

1

n

∑
i=1

(ψn(Yi,Xi;y,x)−Eψn(Yi,Xi;y,x)

∣∣∣∣∣= Op


√

nσ2
Ψn
| logσΨn|

nhd
1


= Op

√ | logh1|
nhd

1

 ,

which is the desired result specified in Equation (B.5).

Step 2. Following the same procedure as in Step 1, we can show that the uniform convergence

rate for each element of the matrix Ξ̂(x,h1) is also
√
| logh1|/(nhd

1). We omit the details for

brevity. Then by Lemma 1, we know that with probability approaching one, the eigenvalues

of Ξ̂(x,h1) is in [1/C,C]. In particular, with probability approaching one, the inverse matrix

Ξ̂(x,h1)
−1 is well-defined, and its induced 2-norm

∥∥∥Ξ̂(x,h1)
−1
∥∥∥

2
is bounded. Then applying
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Lemma 1 once again, we have

sup
x∈X

∥∥∥Ξ̂(x,h1)
−1 −Ξ(x,h1)

−1
∥∥∥

2
= sup

x∈X

∥∥∥Ξ̂(x,h1)
−1(Ξ(x,h1)− Ξ̂(x,h1))Ξ(x,h1)

−1
∥∥∥

2

≤ sup
x∈X

∥∥∥Ξ̂(x,h1)
−1
∥∥∥

2

∥∥∥Ξ(x,h1)− Ξ̂(x,h1)
∥∥∥

2

∥∥∥Ξ(x,h1)
−1
∥∥∥

2

= Op

(√
| logh1|/(nhd

1)

)
,

where the second line follows from the submultiplicativity of the induced 2-norm. Combing the

above result with Step 1, we obtain

sup
y∈R,x∈X

∥∥∥Ξ̂(x,h1)
−1

υ̂υυ(y,x,h1,h2)−Ξ(x,h1)
−1

υυυ(y,x,h1,h2)
∥∥∥

2

≤ sup
y∈R,x∈X

∥∥∥Ξ̂(x,h1)
−1 −Ξ(x,h1)

−1
∥∥∥

2

∥∥υ̂υυ(y,x,h1,h2)
∥∥

2

+ sup
y∈R,x∈X

∥∥υ̂υυ(y,x,h1,h2)−υυυ(y,x,h1,h2)
∥∥

2

∥∥∥Ξ(x,h1)
−1
∥∥∥

2

=Op

(√
| logh1|/(nhd

1)

)
,

where the last line uses the fact that v̂ is uniformly bounded. This proves Equation (5).

Proof of Theorem 3. For the unsmoothed estimator, we can now define the pseudo-true value by

replacing the term K((y−Yi)/h2) with the term 1{Yi ≤ y} for the minimization problem defined

in (3) in the main text. To derive the bias term, we can follow the proof of Theorem 1 and replace

F̃ with F in the definition of υυυ . Therefore, the bias term in this case can be controlled by using

(B.1) and (B.2) without (B.3), which means that we no longer require the differentiability of

F with respect to y. The bias term associated with h2 (as in Theorem 1) no longer exist. The

remaining bias is O(h2
1). The stochastic term can be dealt with by using the proof of Theorem

2. We replace the class ΨY by the class of indicator functions 1{Yi ≤ y},y ∈ R, which is also

uniformly bounded by 1 and is Euclidean. The other parts of the proof remain the same.
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Proof of Theorem 4. Notice that we can write H1

(
β̂ββ (y,x,h1,h2)− β̄ββ (y,x,h1,h2)

)
as

Ξ̂(x,h1)
−1
(

υ̂υυ(y,x,h1,h2)− Ξ̂(x,h1)H1β̄ββ (y,x,h1,h2)
)

=Ξ̂(x,h1)
−1 1

nhd
1

n

∑
i=1

sss(Yi,Xi;y,x,h1,h2)

+Ξ̂(x,h1)
−1 1

nhd
1

n

∑
i=1

rrr
(

Xi − x
h1

)(
F̃(y|Xi)− rrr

(
Xi − x

h1

)⊤
H1β̄ββ (y,x,h1,h2)

)
w
(

Xi − x
h1

)
=Ξ(x,h1)

−1 1
nhd

1

n

∑
i=1

sss(Yi,Xi;y,x,h1,h2)+ err1(y,x)+ err2(y,x)

where

err1(y,x) = Ξ̂(x,h1)
−1 1

nhd
1

n

∑
i=1

rrr
(

Xi − x
h1

)
×

(
F̃(y|Xi)− rrr

(
Xi − x

h1

)⊤
H1β̄ββ (y,x,h1,h2)

)
w
(

Xi − x
h1

)
,

err2(y,x) =
(

Ξ̂(x,h1)
−1 −Ξ(x,h1)

−1
) 1

nhd
1

n

∑
i=1

sss(Yi,Xi;y,x,h1,h2).

We use the empirical process theory to derive the uniform convergence rates of err1 and

err2 respectively in the following Step 1 and Step 2.

Step 1. Define a sequence of function classes Φn = {φn(·, ·;y,x) : y ∈ R,x ∈ X }, where

φn(Y,X ;y,x) =

(
F̃(y|X)− rrr

(
X − x

h1

)⊤
H1β̄ββ (y,x,h1,h2)

)
d

∏
ℓ=1

(
Xℓ− xℓ

h1

)πℓ

wℓ

(
Xℓ− xℓ

h1

)

with ∑πℓ ≤ 1 as before. We want to derive the convergence rate of

sup
φn∈Φn

∣∣∣∣∣ 1
nhd

1

n

∑
i=1

φn(Yi,Xi;y,x)

∣∣∣∣∣ .
Notice that φn is already centered, that is, Eφn(Y,X ;y,x) = 0, by the first-order condition of (2).

Define a larger product class Φ that does not vary with n by Φ = ΦY ΨX1ΨX2 · · ·ΨXd , where ΨXℓ
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is defined in the proof of Theorem 2 and

ΦY = {(Y,X) 7→ (E[K((y−Y )/h)|X ]− rrr(X − x)⊤βββ

×1{|Xℓ− xℓ| ≤ 1,1 ≤ ℓ≤ d} : y ∈ R,x ∈ X ,h > 0,
∥∥βββ
∥∥

2 ≤C}.

To understand the expression of ΦY , recall that by definition F̃(y|X) = E[K((y−Y )/h2) | X ].

The term β̄ββ (y,x,h1,h2) is replaced by a general βββ ∈ Rd+1 with a bounded norm. This can be

done as both the numerator and denominator of β̄ββ (y,x,h1,h2) is bounded. The indicator term

1{|Xℓ− xℓ| ≤ 1,1 ≤ ℓ ≤ d} comes from the support of w. This indicator term is needed for

deriving the uniform boundedness.

For each n, we have Φn ∈ Φ. We want to show that Φ is a uniformly bounded Euclidean

class. Since ΨXℓ
is proven to be uniformly bounded and Euclidean in Theorem 2, we only need

to focus on the class ΨY . First notice that the class

{
(Y,x) 7→ rrr(X − x)⊤βββ1{|Xℓ− xℓ| ≤ 1,1 ≤ ℓ≤ d} : y ∈ R,x ∈ X ,h > 0,

∥∥βββ
∥∥

2 ≤C
}

is uniformly bounded and Euclidean in view of Lemma B.2. By Lemma B.3, we know that the

following class is uniformly bounded and Euclidean:

{
(Y,X) 7→ E[K((y−Y )/h) | X ]1{|Xℓ− xℓ| ≤ 1,1 ≤ ℓ≤ d} : y ∈ R,h > 0

}

Then by Lemma B.4, we know that ΦY is uniformly bounded and Euclidean. Hence, Φ is

uniformly bounded and Euclidean.

Then we want to derive a variance bound for each Φn. By the usual change of variables,

we have for any y ∈ R and x ∈ X ,

E[φn(Y,x;y,x)2]≤ hd
1

∫ (
F̃Y |X(y|x+h1u)− rrr(u)H1β̄ββ (y,x,h1,h2)

)2
w(u)2 fX(x+h1u)du.
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From the uniform bias expansion results in Theorem 1, we have

sup
y∈R,x∈X

∣∣∣F̃Y |X(y|x+h1u)− rrr(u)H1β̄ββ (y,x,h1,h2)
∣∣∣= O(h2

1 +h2
2) = O(h2

1).

Therefore, we can construct a uniform variance bound σ2
Φn

= O(hd+4
1 ) for the class Φn. Then by

Lemma 2, we can show that

sup
φn∈Φn

∣∣∣∣∣ 1
nhd

1

n

∑
i=1

φn(Yi,Xi;y,x)

∣∣∣∣∣= Op

((√
nhd+4

1 | logh1|+ | logh1|
)
/(nhd

1)

)
= Op

(
| logh1|

nhd
1

)
,

where the second line follows from the assumption that nhd+4
1 /| logh1| ≤C. Therefore,

sup
y∈R,x∈X

∥err1(y,x)∥2 = sup
x∈X

∥∥∥Ξ̂(x,h1)
−1
∥∥∥

2
Op

(
| logh1|/(nhd

1)
)
= Op

(
| logh1|/(nhd

1)
)
.

Step 2. Similar as before, we can show that

sup
y∈R,x∈X

∥∥∥∥∥ 1
nhd

1

n

∑
i=1

sss(Yi,Xi;y,x,h1,h2)

∥∥∥∥∥
2

= Op

(√
| logh1|/(nhd

1)

)
.

It is straightforward to see that the summand is centered, and the relevant function classes are

uniformly bounded and Euclidean. For the variance bound, we can simply bound the term(
K
(
(y−Yi)/h2

)
− F̃(y|Xi)

)2
by 1. We omit the details of the derivation. Then by the uniform

convergence rate of Ξ̂(x,h1)
−1 derived in the proof of Theorem 2, we have

sup
y∈R,x∈X

|err2(y,x,h1,h2)|= Op

(
| logh1|/(nhd

1)
)
.

Therefore, we have shown that both the terms err1(y,x) and err2(y,x) are Op

(
| logh1|/(nhd

1)
)

uniformly. Then the desired result follows.
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Proof of Corollary 2. By the asymptotic linear representation in Theorem 4 and the mean value

theorem, we have

sup
|y1−y2|≤δn,x∈X

∣∣∣F̂(y1|x)−F(y1|x)− (F̂(y2|x)−F(y2|x))
∣∣∣

= sup
|y1−y2|≤δn,x∈X

∣∣∣Ξ(x,h1)
−1 1

nhd
1

n

∑
i=1

(sss(Yi,Xi;y1,x,h1,h2)− sss(Yi,Xi;y2,x,h1,h2))
∣∣∣

+Op

(
| logh1|

nhd
1

)

≤Cδn sup
y∈R,x∈X

∥∥∥ 1
nhd

1

n

∑
i=1

∂

∂y
sss(Yi,Xi;y,x,h1,h2)

∥∥∥
2
+Op

(
| logh1|

nhd
1

)
,

where we have used the fact that ∥Ξ(x,h1)
−1∥2 is bounded (Lemma 1). The partial derivative

∂

∂ysss is equal to

∂

∂y
sss(Yi,Xi;y,x,h1,h2) =

1
h2

rrr
(

Xi − x
h1

)k
(

y−Yi

h2

)
−E

[
k
(

y−Yi

h2

)
| Xi

]w
(

Xi − x
h1

)
.

Similar as before, we can use Lemma 2 to show that

sup
y∈R,x∈X

∥∥∥ 1
nhd

1

n

∑
i=1

rrr
(

Xi − x
h1

)(
k
(
(y−Yi)/h2

)
−E

[
k
(
(y−Yi)/h2

)
| Xi

])
w
(

Xi − x
h1

)∥∥∥
2

=Op

√ | logh1|
nhd

1

 .

We omit the details here. It then follows that

sup
y∈R,x∈X

∥∥∥ 1
nhd

1

n

∑
i=1

∂

∂y
sss(Yi,Xi;y,x,h1,h2)

∥∥∥
2
= Op

√ | logh1|
nhd

1

1
h2

 .

This proves the corollary.
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Proof of Corollary 3. Consider the following bias-variance decomposition of θ̂ −θ :

∫ ȳ

y

∫ x̄

x

(
β̄ββ 0(y,x,h1,h2)−βββ

∗
0(y,x,h1,h2)

)
dxdy︸ ︷︷ ︸

bias term

+
∫ ȳ

y

∫ x̄

x

(
β̂ββ 0(y,x,h1,h2)− β̄ββ 0(y,x,h1,h2)

)
dxdy︸ ︷︷ ︸

stochastic term

By Theorem 1 and the assumption that
√

nh2
1 = o(1), we know that the bias term is o(n−1/2).

For the stochastic term, we first want to take care of the matrix Ξ(x,h1). Recall that when

x ∈ X̊h = [x+h, x̄−h], Ξ(x,h1) is equal to the identity matrix III. In the proof of Theorem 4, we

have shown that

sup
y∈R,x∈X

∥∥∥∥∥ 1
nh1

n

∑
i=1

sss(Yi,Xi;y,x,h1,h2)

∥∥∥∥∥
2

= Op

(√
| logh1|/(nh1)

)
.

Therefore, we have

∥∥∥∥∥
∫ ȳ

y

∫ x̄

x

(
Ξ(x,h1)− III

) 1
nh1

n

∑
i=1

sss(Yi,Xi;y,x,h1,h2)

∥∥∥∥∥
2

= op(1/
√

n).

By Theorem 4 and the assumption that
√

nh1/| logh1| → ∞, we can write the stochastic term as

∫ ȳ

y

∫ x̄

x

(
β̂ββ 0(y,x,h1,h2)− β̄ββ 0(y,x,h1,h2)

)
dxdy =

1
n

n

∑
i=1

Zi +op(1/
√

n)

where

Zi =
1
h1

∫ ȳ

y

∫ x̄

x
eee⊤0 IIIsss(Yi,Xi;y,x,h1,h2)dxdy

=
1
h1

∫ ȳ

y

∫ x̄

x

(
K
(

y−Yi

h2

)
− F̃(y|Xi)

)
w
(

Xi − x
h1

)
dxdy.
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By the standard change of variables, we can write Zi as

Zi =
∫ ȳ

y

∫ (Xi−x̄)/h1

(Xi−x)/h1

(
K
(

y−Yi

h2

)
− F̃(y|Xi)

)
w(u)dudy

The random variables {Zi : 1 ≤ i ≤ n} forms an iid triangular array. Each Zi is centered, that is,

E[Zi] = 0. Denote the variance of Zi as Vn, which can be calculated based on change of variables:

Vn = E[Z2
i ]

=
∫ ∫ ȳ

y

∫ (t−x̄)/h1

(t−x)/h1

(
K
(

y− s
h2

)
− F̃(y|t)

)
w(u)dudy

2

f (s, t)dtds

=
∫ ∫ ȳ

y

∫ 1

−1

(
K
(

y− s
h2

)
− F̃(y|t)

)
1[(t−x)/h1,(t−x̄)/h1](u)w(u)dudy

2

f (s, t)dtds

As n → ∞, we have the pointwise convergence results K(y−s
h2

)→ 1{s ≤ y}, F̃(y|t)→ F(y|t), and

1[(t−x)/h1,(t−x̄)/h1](u)→ 1,u ∈ [−1,1]. We know that these functions are bounded and the support

of (Y,X) is compact. Then by the dominated convergence theorem, we have

Vn ∼
∫ (∫ ȳ

y

∫ 1

−1

(
1{s ≤ y}−F(y|t)

)
w(u)dudy

)2

f (s, t)dtds

=
∫ (∫ (

1{s ≤ y}−F(y|t)
)

dy
)2

f (s, t)dtds =V,

where the second line follows from the fact that w integrates to 1. It is straightforward to see that

Zi is bounded, and hence any moment of |Zi| is finite. Then we can apply the Lyapnov central

limit theorem (for example, Theorem 5.11 in White [2001]) to obtain that ∑Zi/
√

n converges in

distribution to N(0,V ). The desired result is thus proved.
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B.2 Preliminary Results in Empirical Process Theory

Lemma B.1. Let K : R→ R be a function of bounded variation. Then the following class is

Euclidean:

{
K
(
(·− x)/h

)
: x ∈ R,h > 0

}
.

Proof of Lemma B.1. This is a direct application of Lemma 22(i) in Nolan and Pollard [1987].

Lemma B.2. Any uniformly bounded and finite-dimensional vector space of functions is Eu-

clidean.

Proof of Lemma B.2. This follows from Lemma 2.6.15 and Theorem 2.6.7 in van der Vaart and

Wellner [1996b].

Lemma B.3. Let G be a uniformly bounded Euclidean class with coefficients (A,v). Then the

class {E[g(·) | X ] : g ∈ G } is also uniformly bounded and Euclidean with coefficients (A,v).

Proof of Lemma B.3. This follows from the fact that the conditional expectation is a projection

in the Hilbert space L2(P) and hence reduces the norm.

Lemma B.4. Let G1 and G2 be two classes of functions that are uniformly bounded and Euclidean

with coefficients (A1,v1) and (A2,v2) respectively. Then the class G1 ⊕G2 = {g1 + g2 : g1 ∈

G1,g2 ∈ G2} is also uniformly bounded and Euclidean with coefficients (A1A2A1A22v1+v2 ,v1 +

v2).

Proof. By Inequalities (A.4) in Andrews [1994], we have

N(G1 ⊕G2,L2(P),ε)≤ N(G1,L2(P),ε/2)N(G2,L2(P),ε/2)

≤ A1(2/ε)v1A2(2/ε)v2 = A1A22v1+v2/ε
v1+v2.
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Lemma B.5. Let G1 be a class of functions that is uniformly bounded by M1 and Euclidean with

coefficients (A1,v1) and G2 a class of functions that is uniformly bounded by M2 and Euclidean

with coefficients (A2,v2). Then the class G1G2 = {g1 ·g2 : g1 ∈ G1,g2 ∈ G2} is uniformly bounded

by M1M2 and Euclidean with coefficients (A1A2(M1 +M2)
v1+v2,v1 + v2).

Proof of Lemma B.5. The proof is similar to that of Theorem 3 in Andrews [1994]. By definition,

for every measure P and every ε ∈ (0,1], N(G1,P,ε) ≤ A1/εv1 and N(G2,P,ε) ≤ A2/εv2 . We

can construct {g̃1, j1 : 1 ≤ j1 ≤ J1} and {g̃2, j2 : 1 ≤ j2 ≤ J2} to be the ε-covering of G1 and G2,

respectively, where J1 = N(G1,P,ε) and N(G1,P,ε). For any g1 ∈ G and g2 ∈ G2, suppose g1

is in the ε-neighborhood of g̃1, j1,∗ and g2 is in the ε-neighborhood of g̃2, j2,∗ . Then the L2(P)

distance between g1g2 and g̃1, j1,∗ g̃2, j2,∗ is

∥∥∥g1g2 − g̃1, j1,∗ g̃2, j2,∗

∥∥∥
L2(P)

≤
∥∥∥g1g2 −g1g̃2, j2,∗

∥∥∥
L2(P)

+
∥∥∥g1g̃2, j2,∗ − g̃1, j1,∗ g̃2, j2,∗

∥∥∥
L2(P)

≤ M1

∥∥∥g2 − g̃2, j2,∗

∥∥∥
L2(P)

+M2

∥∥∥g1 − g̃1, j1,∗

∥∥∥
L2(P)

≤ (M1 +M2)ε.

This means that {g̃1, j1 g̃2, j2 : 1 ≤ j1 ≤ J1,1 ≤ j2 ≤ J2} forms a (M1 + M2)ε-cover of G1G2.

Therefore,

N(G1G2,L2(P),ε)≤ N(G1,L2(P),ε/(M1 +M2))N(G2,L2(P),ε/(M1 +M2))

≤ A1A2(M1 +M2)
v1+v2/ε

v1+v2.

This proves the result.
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Appendix C

Appendix for Chapter 3

Appendix C.1 contains the proofs for theorems and propositions stated in the main

text. Appendix C.2 studies the efficient estimation of parameters implicitly defined by possibly

non-smooth and overidentifying moment restrictions.

C.1 Technical Proofs

We assume that Assumptions 3.1 and 3.2 hold throughout this section. The following

two lemmas are helpful for proving the identification results.

C.1.1 Proof of the Identification Results

Lemma C.1. S ⊥ Z | X and t ∈ T , Yt ⊥ T | S,X.

Proof of Lemma C.1. The first statement follows from the definition of S and the fact that Z

is independent of the vector (Tz1 , · · · ,TzNZ
) conditioning on X . For the second statement, T

is entirely determined by (S,Z,X). Hence, given S and X , T is independent of Yt since Z is

independent of (Yt1 , · · · ,YtNT
) conditional on X .

Lemma C.2. For each t ∈ T and k = 1, · · · ,NZ , the following identification results hold.

(i) P(S ∈ Σt,k | X) = bt,kPt(X) a.s.

(ii) E
[
Yt | S ∈ Σt,k,X

]
= (bt,kQt(X))/(bt,kPt(X)) a.s.
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Proof of Lemma C.2. This is Theorem T-6 in Heckman and Pinto [2018a]. The conditioning is

explicitly presented.

Proof of Theorem 3.1. The first statement follows from applying the law of iterated expectation

to Lemma C.2(i). For the second statement, we can apply Bayes rule to Lemma C.2 and obtain

that

E
[
Yt | S ∈ Σt,k

]
=
∫

E
[
Yt | S ∈ Σt,k,X = x

]
fX |S∈Σt,k

(x)dx

=
∫

E
[
Yt | S ∈ Σt,k,X = x

] P(S ∈ Σt,k | X = x)
P(S ∈ Σt,k)

fX(x)dx

= E
[
bt,kQt(X)

]
/pt,k,

where fX |S∈Σt,k
denotes the conditional density function of X given type S ∈ Σt,k.

Proof of Theorem 3.2. By Lemma L-16 of Heckman and Pinto [2018b], we know that under

the unordered monotonicity assumption, Bt [·, i] = Bt [·, i′] for all si,si′ ∈ Σt,k. Thus, the set Zt,k

always exists. For the first statement, we have

P
(
T = t,S ∈ Σt,k

)
= P

(
Z ∈ Zt,k,S ∈ Σt,k

)
= E

[
P
(
Z ∈ Zt,k,S ∈ Σt,k | X

)]
= E

[
P
(
Z ∈ Zt,k | X

)
P
(
S ∈ Σt,k | X

)]
= E

[
bt,kPt(X)πt,k(X)

]
,

where the second equality follows from the law of iterated expectations and the third equality
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follows from the fact that Z ⊥ S | X (Lemma C.1). For the second statement, notice that

P(T = t,S ∈ Σt,k | X = x) = P(T = t | S ∈ Σt,k,X = x)P(S ∈ Σt,k | X = x)

= P(Z ∈ Zt,k | X)P(S ∈ Σt,k | X = x)

= πt,k(X)bt,kPt(X).

By Lemma C.1, we know that

E
[
Yt | T = t,S ∈ Σt,k,X = x

]
= E

[
Yt | S ∈ Σt,k,X = x

]
.

Therefore, we can apply Bayes rule and obtain that

E
[
Yt | T = t,S ∈ Σt,k

]
=
∫

E
[
Yt | T = t,S ∈ Σt,k,X = x

]
fX |T=t,S∈Σt,k

(x)dx

=
∫

E
[
Yt | S ∈ Σt,k,X = x

] P(T = t,S ∈ Σt,k | X = x)
P(T = t,S ∈ Σt,k)

fX(x)dx

=
∫ bt,kQt(X)

bt,kPt(X)
×

πt,k(X)bt,kPt(X)

qt,k
fX(x)dx

=E
[
bt,kQt(X)πt,k(X)

]
/qt,k.

C.1.2 Semiparametric Efficiency Calculations

We follow the method developed by Newey [1990]. The likelihood of the GLATE model

can be specified as

L (Y,T,Z,X) = fX(X) ∏
z∈Z

(
fz(Y,T | X)πz(X)

)1{Z=z}
,
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where fz(·, · | X) denotes the conditional density of Y,T given Z = z and X . In a regular

parametric submodel, where the true underlying probability measure P is indexed by θ o, we use

the following notations to represent the score functions:

sz(Y,Z | X ;θ) =
∂

∂θ
log
(

fz(Y,T | X ;θ)
)
,

sπ(Z | X ;θ) = ∑
z∈Z

1{Z = z} ∂

∂θ
log
(
πz(X ;θ)

)
,

sX(X ;θ) =
∂

∂θ
log
(

fX(X ;θ)
)
.

The score in a regular parametric submodel is

sθ o(Y,T,Z,X) = ∑
z∈Z

1{Z = z}sz
(
Y,T | X ;θ

o)+ sπ(Z | X ;θ
o)+ sX(X ;θ

o).

Hence, the tangent space of the model is

S =
{

s ∈ L2
0 : s(Y,T,Z,X) = ∑

z∈Z

1{Z = z}sz
(
Y,T | X

)
+ sπ(Z | X)+ sX(X)

for some sz,sπ ,sX such that
∫

sz(y, t | X) fz(y, t | X)dydt ≡ 0,∀z;

∑
z∈Z

sπ(z | X)πz(X)≡ 0, and
∫

sX(x) fX(x)dx = 0
}
,

where L2
0 is a subspace of L2 that contains the mean zero functions.

Proof of Theorem 3.3. We only prove statements (i) and (ii) since (iii) and (iv) are easier cases

that can be proved along the way. We start with the first statement. The path-wise differentiability
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of the parameter βt,k can be verified in the following way: in any parametric submodel, we have

∂

∂θ
βt,k(θ)

∣∣∣
θ=θ o

=
∂

∂θ
(bt,kEθ

[
Qt(X)

]
/pt,k)

∣∣
θ=θ o

=
1

pt,k

(
(∂bt,kEθ

[
Qt(X)

]
/∂θ)|θ=θ o − (bt,kEθ

[
Qt(X)

]
/pt,k)(∂ pt,k/∂θ)|θ=θ o

)
=

1
pt,k

bt,k

(
∂

∂θ
Eθ

[
Qt(X)

]∣∣
θ=θ o −

∂

∂θ
Eθ

[
Pt(X)

]∣∣
θ=θ oβt,k

)
,

where ∂

∂θ
Eθ

[
Qt(X)

]
|θ=θ o and ∂

∂θ
Eθ

[
Pt(X)

]
|θ=θ o are NZ × 1 random vectors whose typical

element can be represented respectively by

∫
y1{τ = t}sz(y,τ | x;θ

o) fz(y,τ | x;θ
o) fX(x;θ

o)dydτdx

+
∫

y1{τ = t}sX(x;θ
o) fz(y,τ | x;θ

o) fX(x;θ
o)dydτdx

and

∫
1{τ = t}sz(y,τ | x;θ

o) fz(y,τ | x;θ
o) fX(x;θ

o)dydτdx

+
∫

1{τ = t}sX(x;θ
o) fz(y,τ | x;θ

o) fX(x;θ
o)dydτdx,

respectively, for z ∈ Z . The EIF is characterized by the condition that

∂

∂θ
βt,k(θ)

∣∣∣
θ=θ o

= E
[
ψβt,k

sθ o

]
, and ψβt,k

∈ S .

The expression of ψβt,k
given in Equation (3.2) meets the above requirements. In particular, the

correspondence between terms in the EIF and path-wise derivative appears exactly as in Lemma

1 of Hong and Nekipelov [2010b].
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For the second statement, the path-wise derivative of γt,k can be computed similarly.

∂

∂θ
γt,k(θ)

∣∣∣
θ=θ o

=
1

qt,k
bt,k

∂

∂θ
Eθ

[
Qt(X)πt,k(X)

]∣∣∣
θ=θ o

−
γt,k

qt,k
bt,k

∂

∂θ
Eθ

[
Pt(X)πt,k(X)

]∣∣∣
θ=θ o

,

where ∂

∂θ
Eθ [Qt(X)πWt,k(X)]|θ=θ o and ∂

∂θ
Eθ [Pt(X)πWt,k(X)]|θ=θ o are NZ × 1 random vectors

whose typical element can be represented by

∫
y1{τ = t}sz(y,τ | x;θ

o)πWt,k(x;θ
o) fz(y,τ | x;θ

o) fX(x;θ
o)dydτdx

+
∫

y1{τ = t}sX(x;θ
o)πWt,k(x;θ

o) fz(y,τ | x;θ
o) fX(x;θ

o)dydτdx

+
∫

y1{τ = t}
(

∂

∂θ
πt,k(X ;θ)

∣∣
θ=θ o

)
fz(y,τ | x;θ

o) fX(x;θ
o)dydτdx,

and

∫
1{τ = t}sz(y,τ | x;θ

o)πWt,k(x;θ
o) fz(y,τ | x;θ

o) fX(x;θ
o)dydτdx

+
∫

1{τ = t}sX(x;θ
o)πWt,k(x;θ

o) fz(y,τ | x;θ
o) fX(x;θ

o)dydτdx

+
∫

1{τ = t}
(

∂

∂θ
πt,k(X ;θ)

∣∣
θ=θ o

)
fz(y,τ | x;θ

o) fX(x;θ
o)dydτdx,

respectively, for z ∈ Z . The main difference appears when dealing with the last terms in the

above two expressions, which can be matched with terms in the efficient influence function of

the following two forms

E
[
Y 1{T = t} | Z = z,X

](
1{Z ∈ Zt,k}−πt,k(X)

)
, and

E
[
1{T = t} | Z = z,X

](
1{Z ∈ Zt,k}−πt,k(X)

)
.
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Take the latter one as an example. Notice that

1{Z ∈ Zt,k}−πt,k(X) = ∑
z∈Zt,k

(
1{Z = z}−πz(X)

)
,

and

(
1{Z = z}−πz(X)

)
sπ(Z | X ;θ

o) =
1{Z = z}

πz(X)

∂

∂θ
πz(X ;θ)

∣∣
θ=θ o −πz(X)sπ(Z | X ;θ

o).

By the law of iterated expectation, we have

E
[
E
[
1{T = t} | Z = z,X

](
1{Z = z}−πz(X)

)
sπ(Z | X ;θ

o)
]

=E
[
E
[
1{T = t} | Z = z,X

]
E
[
1{Z = z}/πz(X) | X

] ∂

∂θ
πz(X ;θ)

∣∣
θ=θ o

]
−E
[
E
[
1{T = t} | Z = z,X

]
πz(X)E

[
sπ(Z | X ;θ

o) | X
]]

=E
[
E
[
1{T = t} | Z = z,X

] ∂

∂θ
πz(X ;θ)

∣∣
θ=θ o

]
=
∫

1{τ = t}
(

∂

∂θ
πz(X ;θ)

∣∣
θ=θ o

)
fz(y,τ | x;θ

o) fX(x;θ
o)dydτdx.

Proof of Proposition 3.1. This proof is based on Section 4 in Newey [1994]. We focus on the

case of βt,k. The other cases are similar. To ease notation, let ht =
(
hY,t,Z,ht,Z,π

)′. The estimator

β̂t,k is defined by the moment condition

E[M
(
X ,βt,k,ht

)
] = 0,

where

M
(
X ,βt,k,ht

)
≡ bt,k

(
hY,t,z1(X)

πz1(X)
, · · · ,

hY,t,zNZ
(X)

πzNZ
(X)

)′

−βt,kbt,k

(
ht,z1(X)

πz1(X)
, · · · ,

ht,zNZ
(X)

πzNZ
(X)

)′

.
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We then compute the derivatives of M with respect to the parameters:

E
[
∂M/∂βt,k

]
=−bt,kE

[
Pt(X)

]
=−po

t,k

∂M/∂hY,t,zi|ht=ho
t
= bt,k[i]/π

o
zi
(X)≡ δY,t,zi(X)

∂/∂ht,ziM|ht=ho
t
=−(βt,kbt,k[i])/π

o
zi
(X)≡ δt,zi(X)

∂M/∂πzi|ht=ho
t
=−(bt,k[i]Qo

t,zi
(X))/π

o
zi
(X)+(βt,kbt,k[i]Po

t,zi
(X))/π

o
zi
(X)≡ δπ,zi(X),

where bt,k[i] denotes the ith element of the vector bt,k. Define

α (Y,T,Z,X)≡ ∑
z∈Z

δY,t,z(X)
(

1{Z = z}Y 1{T = t}−ho
Y,t,z(X)

)
+ ∑

z∈Z

δt,z(X)
(

1{Z = z}1{T = t}−ho
t,z(X)

)
+ ∑

z∈Z

δπ,z(X)
(
1{Z = z}−π

o
z (X)

)
.

We have

α (Y,T,Z,X) = bt,kζ (Z,X ,πo)
(
ι(Y 1{T = t})−Qo

t (X)
)

−β
o
t,kbt,kζ (Z,X ,πo)

(
ι1{T = t}−Po

t (X)
)
.

Then Newey’s (1994) Proposition 4 suggests that the influence function of the estimator β̂t,k is

(M+α)/pt,k which is equal to the EIF ψβt,k .
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C.1.3 Proof of Robustness Results

Proof of Proposition 3.2. We prove the case for ψ pt,k , the other cases can be dealt with analo-

gously. First assume π = πo, then

E
[
1{Z = z}/π

o
z (X) | X

]
= 1,

which implies that E
[
ζ (Z,X ,πo) | X

]
is almost surly equal to the identity matrix I. By the law

of total expectations, we have

E
[
1{T = t}1{Z = z}/π

o
z (X) | X

]
= E

[
1{T = t} | Z = z,X

]
= Po

t,z(X),

which implies that E
[
ζ (Z,X ,πo)ι1{T = t}

]
= E

[
Po

t (X)
]
. Therefore,

bt,kE[ζ (Z,X ,πo)
(
ι(1{T = t})−Pt(X)

)
+Pt(X)]

=bt,kE
[
ζ (Z,X ,πo)ι1{T = t}

]
+bt,kE

[
(I−ζ (Z,X ,πo))Pt(X)

]
= bt,kE

[
Po

t (X)
]
= po

t,k.

Now suppose that Pt = Po
t . Then by the law of total expectation, we have

E[1{Z = z}(1{T = t}−Po
t,z(X)) | X ]

=πz(X)E[E[1{T = t} | Z = z,X ]−Po
t,z(X) | X ] = 0.

This implies that E[ζ (Z,X ,π)(ι(1{T = t})−Po
t (X))] = 0. Hence,

bt,kE
[
ζ (Z,X ,π)

(
ι(1{T = t})−Po

t (X)
)
+Po

t (X)
]
= bt,kE

[
Po

t (X)
]
= po

t,k.

This proves the proposition.

Proof of Proposition 3.3. Since bt,k is a finite vector, it suffices to verify the Neyman orthogo-
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nality condition for ψz, which is defined by

ψz(Y,T,Z,X ,βt,k,Qt ,Pt ,πz)

≡
(
(1{Z = z}/πz(X))

(
1{T = t}−Pt,z(X)

)
+Pt,z(X)

)
βt,k

− (1{Z = z}/πz(X))
(
Y 1{T = t}−Qt,z(X)

)
−Qt,z(X).

We want to show that

d
dr

E
[
ψz(Y,T,Z,X ,βt,k,Qr

t ,P
r
t ,π

r
z )
]∣∣∣

r=0
= 0,

where Qr
t = Qo

t + r(Qt −Qo
t ), Pr

t = Po
t + r(Pt −Po

t ), and πr
z = πo

z + r(πz −πo
z ). In fact,

d
dr

E
[
ψz(Y,T,Z,X ,βt,k,Qr

t ,P
r
t ,π

r
z )
]∣∣

r=0

=E
[
−1{Z = z}
(πr

z (X))2

(
1{T = t}−Pr

t,z(X)
)(

πz(X)−π
o
z (X)

)
βt,k

+

(
Pt,z(X)−Po

t,z(X)− 1{Z = z}
πr

z (X)

(
Pt,z(X)−Po

t,z(X)
))

βt,k

+
1{Z = z}
(πr

z (X))2

(
Y 1{T = t}−Qr

t,z(X)
)(

πz(X)−π
o
z (X)

)
− (Qt,z(X)−Qo

t (X))+
1{Z = z}

πr
z (X)

(
Qt,z(X)−Qo

t,z(X)
)]∣∣∣

r=0

=E
[
−1{Z = z}
(πo

z (X))2

(
1{T = t}−Po

t,z(X)
)(

πz(X)−π
o
z (X)

)
βt,k

+

(
Pt,z(X)−Po

t,z(X)− 1{Z = z}
πo

z (X)

(
Pt,z(X)−Po

t,z(X)
))

βt,k

+
1{Z = z}
(πo

z (X))2

(
Y 1{T = t}−Qo

t,z(X)
)(

πz(X)−π
o
z (X)

)
− (Qt,z(X)−Qo

t,z(X))+
1{Z = z}

πo
z (X)

(
Qt,z(X)−Qo

t,z(X)
)]

,
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which equals zero because of the following three identities:

E[1{Z = z}/π
o
z (X) | X ] = 1,

E[1{Z = z}/π
o
z (X)(1{T = t}−Po

t,z(X)) | X ] = 0,

E[1{Z = z}/π
o
z (X)(Y 1{T = t}−Qo

t,z(X)) | X ] = 0.

Proof of Theorem 3.4. The asserted claims follow from Theorem 3.1, Theorem 3.2, and Corol-

lary 3.2 of Chernozhukov et al. [2018] (henceforth referred to as the DML paper). We want to

verify their Assumption 3.1 and 3.2. Adopting the notation from the DML paper, we let

ψ
a(T,Z,X ,Pt ,π) =−bt,k

(
ζ (Z,X ,π)

(
ι1{T = t}−Pt(X)

)
+Pt(X)

)

and

ψ
b(Y,T,Z,X ,Qt ,π) = bt,k

(
ζ (Z,X ,π)

(
ι(Y 1{T = t})−Qt(X)

)
+Qt(X)

)

so that the linearity of the moment condition (with respect to βt,k) is verified by the fact that

ψ = ψaβ t,k +ψb. Define1

εn = max
z∈Z

(
∥Q̂t,z −Qo

t,z∥2 ∨∥P̂t,z −Po
t ∥2 ∨

∥∥π̂z −π
o
z
∥∥

2

)
.

By assumption on the convergence rates of the nonparametric estimators, we have εn = o(n−1/4).

Define Cε =Cε,1∨Cε,2∨Cε,3∨Cε,4, where Cε,1,Cε,2,Cε,3, and Cε,4 are positive constant that only

depends on C and ε and are specified later in the proof. Let δn be a sequence of positive constants

approaching zero and satisfies that δn ≥Cε

(
ε2

n
√

n∨n−1/4 ∨n−(1−2/q)
)

. Such construction is

1For simplicity, we drop the superscript l in the nonparametric estimators.
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possible since
√

nε2
n = o(1). We set the nuisance realization set Nn (denoted by TN in the DML

paper) to be the set of all vector functions (Qt ,Pt ,πz : z ∈ Z ) consisting of square-integrable

functions Qt,z,Pt,z, and πz such that for all z ∈ Z :

∥∥Qt,z
∥∥

q ≤C,Pt,z ∈ [0,1],πz ∈ [ε,1],z ∈ Z ,

∥Qt,z −Qo
t,z∥q ∨∥Pt,z −Po

t,z∥q ∨
∥∥πz −π

o
z
∥∥

q ≤ εn,∥∥πz −π
o
z
∥∥

2 ×
(
∥Qt,z −Qo

t,z∥2 +∥Pt,z −Po
t,z∥2

)
≤ ε

2
n .

Consider Assumption 3.1 in the DML paper. Assumption 3.1(d), the Neyman orthogo-

nality condition, is verified by Proposition 3.3, where the validity of the differentiation under the

integral operation is verified later in the proof. Assumption 3.1(e), the identification condition, is

verified by the condition that po
t,k ∈ [ε,1]. The remaining conditions of Assumption 3.1 in the

DML paper are trivially verified.

Next, we consider Assumption 3.2 in the DML paper. Note that Assumption 3.2(a) holds

by the construction of Nn and εn and our assumptions on the nuisance estimates. Assumption

3.2(d) is verified by our assumption that the semiparametric efficiency bound of βt,k is above ε .

The remaining task is to verify Assumption 3.2(b) and 3.2(c) in the DML paper. To do that, we

choose n sufficiently large and let (Qt,z,Pt,z,πz : z ∈ Z ) be an arbitrary element of the nuisance

realization set Nn. We keep the above notations throughout the remaining part of the proof.

Define

ψ
a
z (T,Z,X ,Pt ,πz) =

1{Z = z}
πz(X)

(1{T = t}−Pt,z(X))+Pt,z(X)

and

ψ
b
z (Y,T,Z,X ,Qt ,πz) =

1{Z = z}
πz(X)

(Y 1{T = t}−Qt,z(X))+Qt,z(X).
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Since ψa is a linear combination of ψa
z ,z ∈ Z and ψb is a linear combination of ψb

z ,z ∈ Z , we

only need
∥∥ψa

z (T,Z,X ,Pt ,πz)
∥∥

q and
∥∥∥ψb

z (Y,T,Z,X ,Qt ,πz)
∥∥∥

q
to be uniformly bounded (i.e., the

bounds do not depend on n) for z ∈ Z in order to verify Assumption 3.2(b) in the DML paper.

In fact,

∥∥∥ψ
b
z (Y,T,Z,X ,Pt ,πz)

∥∥∥
q
≤
∥∥∥1{Z = z}/πz(X)

∣∣Y 1{T = t}−Qt,z(X)
∣∣∥∥∥

q
+
∥∥Qt,z(X)

∥∥
q

≤ 1
ε

(∥∥Y 1{T = t}
∥∥

q +
∥∥Qt,z(X)

∥∥
q

)
+
∥∥Qt,z(X)

∥∥
q ≤ 2C/ε +C,

where we have used the assumption that πz ≥ ε ,
∥∥Y 1{T = t}

∥∥
q ≤C, and

∥∥Qt(X)
∥∥

q ≤C. Simi-

larly, we have

∥∥ψ
a
z (T,Z,X ,Pt ,πz)

∥∥
q ≤
∥∥∥1{Z = z}/πz(X)

∣∣1{T = t}−Pt,z(X)
∣∣∥∥∥

q
+
∥∥Pt,z(X)

∥∥
q

≤ 1
ε

(
1+
∥∥Pt,z(X)

∥∥
q

)
+
∥∥Pt,z(X)

∥∥
q ≤ 2/ε +1,

where we have used the assumption that πz ≥ ε and Pt ∈ [0,1]. Thus, Assumption 3.2(b) in the

DML paper is verified.

To verify Assumption 3.2(c) in the DML paper, we again only need to verify the corre-

sponding conditions for ψa
z and ψb

z , respectively. For ψa
z , we have

∥∥ψ
a
z (T,Z,X ,Pt ,πz)−ψ

a
z (T,Z,X ,Po

t ,π
o
z )
∥∥

2

≤

∥∥∥∥∥πz(X)−πo
z (X)

πz(X)πo
z (X)

∥∥∥∥∥
2

+

∥∥∥∥∥Pt,z(X)

πz(X)
−

Po
t,z(X)

πo
z (X)

∥∥∥∥∥
2

+
∥∥∥Pt,z(X)−Po

t,z(X)
∥∥∥

2

≤ 1
ε2

∥∥πz(X)−π
o
z (X)

∥∥
2 +

1
ε2

∥∥∥(Pt,z(X)−Po
t,z(X))πo

z (X)+Po
t,z(X)(πo

z (X)−πz(X))
∥∥∥

2

+
∥∥∥Pt,z(X)−Po

t,z(X)
∥∥∥

2

≤ 2
ε2

∥∥πz(X)−π
o
z (X)

∥∥
2 +
(

1/ε
2 +1

)∥∥∥Pt,z(X)−Po
t,z(X)

∥∥∥
2
≤Cε,1εn ≤ δn,
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where the second to last inequality follows from the fact that Po
t,z,π

o
z ∈ [0,1]. For ψb

z , we have

∥∥∥ψ
b
z (Y,T,Z,X ,Qt ,πz)−ψ

b
z (Y,T,Z,X ,Qo

t ,π
o
z )
∥∥∥

2

≤ 1
ε2

∥∥∥π
o
z (X)(Y 1{T = t}−Qt,z(X))−πz(X)(Y 1{T = t}−Qo

t,z(X))
∥∥∥

2

+
∥∥∥Qt,z(X)−Qo

t,z(X)
∥∥∥

2

=
1
ε2

∥∥∥(Y 1{T = t}−Qo
t,z(X))(πo

z (X)−πz(X))+π
o
z (X)(Qo

t,z(X)−Qt,z(X))
∥∥∥

2

+
∥∥∥Qt,z(X)−Qo

t,z(X)
∥∥∥

2

≤ 1
ε2

∥∥∥(Y 1{T = t}−Qo
t,z(X))(πo

z (X)−πz(X))
∥∥∥

2
+
∥∥∥π

o
z (X)(Qo

t,z(X)−Qt,z(X))
∥∥∥

2

+
∥∥∥Qt,z(X)−Qo

t,z(X)
∥∥∥

2

≤ C
ε2

∥∥π
o
z (X)−πz(X)

∥∥
2 +

(
1
ε2 +1

)∥∥∥Qo
t,z(X)−Qt,z(X)

∥∥∥
2
≤Cε,2εn ≤ δn,

where the last inequality follows from our assumption that |Y 1{T = t}−Qo
t (X)| ≤C and the

fact that πo
z ∈ [ε,1]. Combining the above two inequality results, we can verify the first two

conditions of Assumption 3.2(c) in the DML paper.

For the last condition of Assumption 3.2(c) in the DML paper, which bounds the second-

order Gateaux derivative, we again consider ψa
z and ψb

z separately. For r ∈ [0,1), recall that

Qr
t,z = Qo

t,z+r(Qt,z−Qo
t,z), Pr

t,z = Po
t,z+r(Pt,z−Po

t,z), and πr
z = πo

z +r(πz−πo
z ). Clearly, Pr

t,z,π
r
z ∈
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[0,1]. With differentiation under the integral, we have

∂ 2

∂ r2E
[
ψ

a
z (T,Z,X ,Pr

t ,π
r
z )
]

=
∂

∂ r
E
[
−1{Z = z}
(πr

z (X))2

(
1{T = t}−Pr

t,z(X)
)(

πz(X)−π
o
z (X)

)
+Pt,z(X)−Po

t,z(X)− 1{Z = z}
πr

z (X)

(
Pt,z(X)−Po

t,z(X)
)]

=E
[

2×1{Z = z}
(πr

z (X))3 (πz(X)−π
o
z (X))2(1{T = t}−Pr

t,z(X))

]
+E

[
1{Z = z}
(πr

z (X))2 (πz(X)−π
o
z (X))(Pt,z(X)−Po

t,z)

]
+E

[
1{Z = z}
(πr

z (X))2 (πz(X)−π
o
z (X))(1{T = t}−Pr

t,z(X))(Pt,z(X)−Po
t,z)

]
−E

[
1{Z = z}

πr
z (X)

(1{T = t}−Pr
t,z(X))(Pt,z(X)−Po

t,z)
2
]
.

Using the fact that |1{T = t}−Pr
t (X)| ≤ 1 and πr

z ≥ ε , we can bound the above derivative by

∣∣∣ ∂ 2

∂ r2E
[
ψ

a
z (T,Z,X ,Pr

t ,π
r
z )
]∣∣∣≤Cε

(∥∥πz(X)−π
o
z (X)

∥∥2
2 +
∥∥Pt,z(X)−Po

t,z(X)
∥∥2

2

)
+Cε

∥∥πz(X)−π
o
z (X)

∥∥
2 ×∥Pt,z(X)−Po

t,z(X)∥2

≤Cε,3ε
2
n ≤ δn/

√
n.

By bounding the first and second derivative uniformly with respect to r, we know that the

differentiation under the integral operation is valid. So the Neyman orthogonality condition is
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verified. Analogously, we can show that

∂ 2

∂ r2E
[
ψ

b
z (Y,T,Z,X ,Qr

t ,π
r
z )
]

=E
[

2×1{Z = z}
(πr

z (X))3 (πz(X)−π
o
z (X))2(Y 1{T = t}−Qr

t,z(X))

]
+E

[
1{Z = z}
(πr

z (X))2 (πz(X)−π
o
z (X))(Qt,z(X)−Qo

t,z)

]
−E

[
1{Z = z}
(πr

z (X))2 (πz(X)−π
o
z (X))(Y 1{T = t}−Qr

t,z(X))(Qt,z(X)−Qo
t,z)

]
−E

[
1{Z = z}

πr
z (X)

(Y 1{T = t}−Qr
t,z(X))(Qt,z(X)−Qo

t,z)
2
]
.

Under the assumption |Y 1{T = t}−Qo
t,z(X)| ≤C, we have

|Y 1{T = t}−Qr
t,z(X)| ≤ |Y 1{T = t}−Qo

t,z(X)|+ r|Qt,z(X)−Qo
t,z| ≤C+1,

for all r ∈ [0,1] and n large enough. Then we can bound the above derivative by

∣∣∣ ∂ 2

∂ r2E
[
ψ

b
z (Y,T,Z,X ,Qr

t ,π
r
z )
]∣∣∣≤Cε

(∥∥πz(X)−π
o
z (X)

∥∥2
2 +
∥∥Qt,z(X)−Qo

t,z(X)
∥∥2

2

)
+Cε

∥∥πz(X)−π
o
z (X)

∥∥
2 ×
∥∥∥Qt,z(X)−Qo

t,z(X)
∥∥∥

2

≤Cε,4ε
2
n ≤ δn/

√
n.

Therefore, we have verified the last condition of Assumption 3.2(c) in the DML paper.

Lastly, we need to verify the condition on δn in Theorem 3.1 and 3.2 in the DML paper,

that is, δn ≥ n−[(1−2/q)∧(1/2)]. This directly follows from the construction of δn.

C.1.4 Proof of Weak IV Inference Results

Proof of Theorem 3.5. We first prove part (i). Consider applying the DML method to the moment

condition (3.8) to estimate the parameter υ −β0 p and obtain the standard error. We want to show

151



the convergence in distribution of

σ̌
−1
ψ

√
n
[
(υ̌ −β0 p̌)− (υ −β0 p)

]
= ρ̌ −

√
n(υ −β0 p)/σ̌ψ (C.1)

to the standard normal distribution uniformly over the DGPs in PWI(c0,c1). To do that, we need

to verify Assumptions 3.1 and 3.2 in the DML paper regarding the above moment condition.

Assumptions 3.1(a)-(c) hold trivially. Assumption 3.1(d), the Neyman orthogonality condition,

is verified by Proposition 3.3. That is, the Gateaux derivatives with respect to the nuisance

parameters are zero regardless of the value of β . Assumption 3.1(e), the identification condition,

is verified since the Jacobian of the parameter in the moment condition is 1. Assumption 3.2 in

the DML paper can be verified in the same way as in the proof of Theorem 3.4. For brevity, we

do not repeat the verification here.

For DGPs in PWI
β0

(c0,c1), (C.1) is equal to ρ̌ . Therefore, the uniform convergence in

distribution of |ρ̌| is established in the null space, and the size of the test is uniformly controlled

accordingly. For DGPs in PWI
β

(c0,c1), where β > β0, we have

ρ̌ =
(
ρ̌ −

√
n(υ −β0 p)/σ̌ψ

)
+
√

n(υ −β0 p)/σ̌ψ

=
(
ρ̌ −

√
n(υ −β0 p)/σ̌ψ

)
+
√

n(β −β0)p/σ̌ψ .

The first term on the RHS of the last equality converges in distribution to N(0,1). In contrast,

the second term diverges to infinity since σ̌ψ converges in probability to σψ ≥√
c0 by Theorem

3.2 in the DML paper. Therefore, the probability of |ρ̌| exceeding any finite number converges

to 1. The case where β < β0 is essentially the same.

To prove part (ii) of the theorem, notice that (β −β0)p ≤ 0 for any DGP in the null space⋃
β≤β0

PWI
β

(c0,c1), which implies that ρ̌ ≤ ρ̌ −
√

n(υ −β0 p)/σ̌ψ . Therefore,

sup
P

PP

(
ρ̌ > N1−α

)
≤ sup

P
PP
(
ρ̌ −

√
n(υ −β0 p)/σ̌ψ > N1−α

)
→ α,
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where the supremum is taken over P ∈
⋃

β≤β0
PWI

β
(c0,c1). Consistency can be derived in the

same way as part (i).

C.2 Implicitly Defined Parameters

This section studies general parameters defined implicitly through moment conditions.

We allow the moment conditions to be non-smooth, which is the case when the parameter of

interest is the quantile. We also allow the moment conditions to be overidentifying, which could

be the result of imposing the underlying economic theory on multiple levels of treatment and

instrument.

To facilitate the exposition, we define a random variable Y ∗
t,k such that the marginal

distribution of Y ∗
t,k is equal to the conditional distribution of Yt given S∈Σt,k. The joint distribution

of the Y ∗
t,k’s is irrelevant and hence left unspecified. For convenience, we use a single index j ∈ J

rather than (t,k) for labeling. That is, we collect the Y ∗
t,k’s into the vector Y ∗ ≡ (Y ∗

1 , · · · ,Y ∗
J ). Let

t j be the treatment level associated with Y ∗
j . The quantities p j and b j are analogously defined.2

Let the parameter of interest be η , which lies in the parameter space Λ ⊂ Rdη , dη ≤ J.

The true value of the parameter η0 satisfies the moment condition

E
[
m(Y ∗,ηo)

]
= 0,

where m : Y J ×Rdη → RJ is a vector of functions:

m(Y ∗,η)≡
(
m1(Y ∗

1 ,η), · · · ,mJ(Y ∗
J ,η)

)′
Since the vector η appears in each m j, restrictions are allowed both within and across different

subpopulations. Another interesting feature of this specification is that the moment conditions

2We can further extend the vector Y ∗ to include variables whose marginal distributions are the same as the
conditional distributions of Yt given T = t,S ∈ Σt,k. Efficient estimation in this more general case is similar and
hence omitted for brevity.
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are defined for the random variables that are not observed. But their marginal distributions can

be identified similar to Theorem 3.1.

Let m̄ ≡ (m̄′
1, · · · , m̄′

J)
′, where

m̄ j(X ,η) =
(

m̄ j,z1(X ,η), · · · , m̄ j,zNZ
(X ,η)

)′
and

m̄ j,z(X ,η) = E
[
m j(Y,η)1{T = t j} | Z = z,X

]
.

The functions m̄ j,z are identified from the data. Similar to Theorem 3.1, we can show that the

parameter η is identified by the moment conditions:

b jE
[
m̄ j(X ,η)

]
= 0,1 ≤ j ≤ J ⇐⇒ η = η

o.

The following theorem gives the SPEB for the estimation of η .

Theorem C.1. Assume the following conditions hold.

(i) E
[
m(Y ∗,η)2

]
< ∞,η ∈ Λ.

(ii) For each j and z, m j,t j,z is continuously differentiable in its second argument. Let Γ be the

J ×dη matrix whose jth row is b j
d

dη
E
[
m̄ j(X ,η)

]∣∣′
η=ηo , and assume Γ has full column

rank.

Then for the estimation of η , the EIF is

−
(

Γ
′V−1

Γ

)−1
Γ
′V−1

ψ
η(Y,T,Z,X ,ηo,πo, m̄o), (C.2)
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where

V = E
[
ψ

η(Y,T,Z,X ,η ,π, m̄)ψη(Y,T,Z,X ,η ,π, m̄)′
]

and ψη(Y,T,Z,X ,η ,π, m̄) is a J×1 random vector whose jth element is

b j

(
ζ (Z,X ,π)

(
ι(m j(Y,η)1{T = t j})− m̄ j(X ,η)

)
+ m̄ j(X ,η)

)
(C.3)

In particular, the semiparametric efficiency bound is
(

Γ′V−1Γ

)−1
.

Proof of Theorem C.1. The proof is based on the approach described in section 3.6 of Hong and

Nekipelov [2010a] and the proof of Theorem 1 in Cattaneo [2010]. We use a constant dη ×dm

matrix A to transform the overidentified vector of moments into an exactly identified system

of equations A
(

b jE
[
m̄ j(X ,η)

])J

j=1
= 0, find the A-dependent EIF for the exactly-identified

parameter, and choose the optimal A. In a parametric submodel, the implicit function theorem

gives that

∂

∂θ
η
∣∣
θ=θ o =−(AΓ)−1 A

∂

∂θ

(
b jEθ

[
m̄ j(X ,ηo)

])J

j=1

∣∣
θ=θ o,

where ∂

∂θ
Eθ

[
m̄ j(X ,ηo)

]∣∣
θ=θ o is an NZ ×1 random vector whose typical element can be repre-

sented by

∫
m j(y,ηo)1{τ = t j}sz(y,τ | x;θ

o) fz(y,τ | x;θ
o) fX(x;θ

o)dydτdx

+
∫

m j(y,ηo)1{τ = t j}sX(x;θ
o) fz(y,τ | x;θ

o) fX(x;θ
o)dydτdx,

for z ∈ Z . So the EIF for this exactly-identified parameter is

ψ
A(Y,T,Z,X ,ηo,πo, m̄o) =−(AΓ)−1 AΨ

η(Y,T,Z,X ,ηo,πo, m̄o),
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where ψη is defined by Equation (C.3). It is straightforward to verify that ψA satisfies

∂

∂θ
η
∣∣
θ=θ o = E

[
ψAs′

θ o

]
, and ψA ∈ S . The optimal A is chosen by minimizing the sandwich

matrix E
[
ψA(ψA)′

]
= (AΓ)−1 AE

[
ψη(ψη)′

]
A′ (Γ′A′)−1. Thus, the EIF for the over-identified

parameter is obtained when A = Γ′V−1. Plugging this expression into ψA, we obtain Equation

(C.2).

Note that, for example, m j(Y ∗
j ,η) =Y ∗

j −η , then η = β j, and the efficiency bound shown

above reduces to the one computed in Theorem 3.3. If T = Z, that is, the treatment satisfies the

unconfounded, then the Theorem C.1 reduces to Theorem 1 in Cattaneo [2010].

For estimation, we use the EIFs to generate moment conditions and propose a three-step

semiparametric GMM procedure. The criterion function is

Ψ
η
n (η ,π,m) =

1
n

n

∑
i=1

ψ
η(Yi,Ti,Zi,Xi,η ,π, m̄). (C.4)

Its probability limit is denoted as

Ψ
η(η ,π,mZ) = E

[
ψ

η(Y,T,Z,X ,η ,π, m̄)
]
, (C.5)

where the expectation is taken with respect to the true parameters (πo, m̄o). The implementation

procedure is as follows. Assume that we have nonparametric estimators π̂ and m̂ that consistently

estimate πo and m̄o, respectively. We first find a consistent GMM estimator η̃ using the identity

matrix as the weighting matrix, that is,

∥∥Ψ
η
n (η̃ , π̂, m̂)

∥∥
2 ≤ inf

η∈Λ

∥∥Ψ
η
n (η , π̂, m̂)

∥∥
2 +op(1). (C.6)

Next, we use this estimate to form a consistent estimator V̂ of the covariance matrix V , where

V̂ =
1
n

n

∑
i=1

ψ
η(Yi,Ti,Zi,Xi, η̃ , π̂, m̂)ψη(Yi,Ti,Zi,Xi, η̃ , π̂, m̂)′.
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Then we let η̂ be the optimally-weighted GMM estimator:

Ψ
η
n (η̂ , π̂, m̂Z)Vn(η̃ , π̂, m̂Z)

−1
Ψ

η
n (η̂ , π̂, m̂Z)

′

≤ inf
η∈Λ

Ψ
η
n (η , π̂, m̂Z)Vn(η̃ , π̂, m̂Z)

−1
Ψ

η
n (η , π̂, m̂Z)

′+op

(
n−1/2

)
.

To conduct inference, we estimate Γ using the estimator Γ̂ whose elements are defined as

Γ̂ jl =
1
n

n

∑
i=1

b j
∂

∂η
m̂ j(Xi,η)

∣∣∣
η=η̂

,

where we have implicitly assumed that the estimator m̂ j is differentiable in its second argument.

In the following theorem, we derive the asymptotic properties of the GMM estimators.

The main theoretical difficulty is that the random criterion function Ψn(·, π̂, m̂) could potentially

be discontinuous because we allow m(Y ∗, ·) to be discontinuous. We use the theory developed in

Chen et al. [2003] to overcome this problem.3 Let Πz be the function class that contains πo
z . Let

M j,z be the function class that contains m̄o
j,z.

Theorem C.2. Let the assumptions in Theorem C.1 hold. Assume the following conditions hold.

(i) The parameter space Λ is compact. The true parameter ηo is in the interior of Λ.

(ii) For any j,z and m̄ j,z ∈ M j,z, there exists C > 0 such that for δ > 0 sufficiently small,

sup
|η ′−η |≤δ

E
∣∣m̄ j,z(X ,η ′)− m̄ j,z(X ,η)

∣∣2 ≤Cδ
2.

(iii) Donsker properties:

∫
∞

0
logN(ε,Πz,∥·∥∞

)dε,
∫

∞

0
logN(ε,M j,z,∥·∥∞

)dε < ∞,

3Cattaneo [2010] instead uses the theory from Pakes and Pollard [1989]. However, the general theory of
Chen et al. [2003] is more straightforward to apply in this case since they explicitly assume the presence of
infinite-dimensional nuisance parameters, which can depend on the parameters to be estimated.
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where N(ε,F ,∥·∥) denotes the covering number of the space (F ,∥·∥).

(iv) Convergence rates of the nonparametric estimators:

∥∥π̂z −π
o
z
∥∥

∞
,∥m̂ j,z − m̄o

j,z∥∞ = op(n−1/4).

(v) The function supη∈Λ

∣∣∣ ∂

∂η
m̄o

j(·,η)
∣∣∣ is integrable. The estimator ∂

∂η
m̂ j is consistent uniformly

in its second argument, that is,

∥∥∥∥ ∂

∂η
m̂ j(x,η)− ∂

∂η
m̄o

j(x,η)

∥∥∥∥
∞

= op(1),∀x.

Then η̃ = ηo +op(1), V̂ =V +op(1), Γ̂ = Γ+op(1), and

√
n(η̂ −η

o) =⇒ N
(

000,(Γ′V−1
Γ)−1

)
,

where 000 denotes a vector of zeros.

The following lemma is helpful for proving Theorem C.2.

Lemma C.3. Under the assumptions of Theorem C.1, the class

F ≡
{

ψ
η(Y,T,Z,X ,η ,π, m̄) : π ∈ Πz, m̄ j,z ∈ M j,z,1 ≤ j ≤ J,z ∈ Z

}
is Donsker with a finite integrable envelope. The following stochastic equicontinuity condition

hold: for any positive sequence δn = o(1),

sup
{

Ψ
η
n (η ,π, m̄)−Ψ

η(η ,π, m̄)−Ψ
η
n (η

o,πo,mo
Z) :

∥η −η
o∥2 ∨∥π −π

o∥
∞
∨∥m̄− m̄o∥

∞
≤ δn

}
= op

(
n−1/2

)
,

where the supremum is taken over η ∈ Λ, πz ∈ Πz, and m̄ j,z ∈ M j,z.
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Proof of Lemma C.3. We first verify that the moment condition ψη satisfies Condition (3.2) of

Theorem 3 in Chen et al. [2003] (hereafter CLK). In fact, when ∥m̄′
j,z − m̄ j,z∥∞ ∨

∥∥η ′−η
∥∥

∞
≤ δ ,

the triangle inequality gives that

E
∣∣∣m̄′

j,z(X ,η ′)− m̄ j,z(X ,η)
∣∣∣2

≤2E
∣∣∣m̄′

j,z(X ,η ′)− m̄′
j,z(X ,η)

∣∣∣2 +2E
∣∣∣m̄′

j,z(X ,η)− m̄ j,z(X ,η)
∣∣∣2

≤const ×δ
2,

where we use the notation const to denote a generic constant that may have different values

at each appearance. The last inequality follows from the assumption (ii). Similarly, we can

verify that the remaining terms in ψη also satisfy the same condition. Therefore, ψη is locally

uniformly L2-continuous, that is,

E
[

sup
{∣∣ψη(Y,T,Z,X ,η ′,π ′, m̄′)−ψ

η(Y,T,Z,X ,η ,π, m̄)
∣∣ :∥∥η

′−η
∥∥∨∥∥π

′−π
∥∥

∞
∨
∥∥m̄′− m̄

∥∥
∞
≤ δ

}]
≤ const.×δ

2.

Following the same steps as in the proof of Theorem 3 in CLK (p. 1607), we can show that the

bracketing number of F is bounded by

N[]

(
ε,F ,∥·∥L2

)
≤N(ε/const,Λ,∥·∥)×∏

z
N(ε/const,Πz,∥·∥)×∏

j,z
N(ε/const,M j,z,∥·∥).

159



Therefore, the bracketing entropy of class F is bounded by

logN[]

(
ε,F ,∥·∥L2

)
≤const ×

(
logN(ε/const,Λ,∥·∥)∨max

z
logN(ε/const,Πz,∥·∥)

∨max
j,z

logN(ε/const,M j,z,∥·∥)
)
.

Under the assumption that Λ is compact and

∫
∞

0
logN(ε,Πz,∥·∥)dε,

∫
∞

0
logN(ε,M j,z,∥·∥)dε < ∞,∀ j,z,

we have that

∫
∞

0
logN[]

(
ε,F ,∥·∥L2

)
dε < ∞.

This implies that F is Donsker with a finite integrable envelope. Lastly, as stated in Lemma 1 of

CLK, the asserted stochastic equicontinuity condition is implied by the fact that F is Donsker

and ψη is L2-continuous.

Proof of Theorem C.2. We follow the large sample theory in CLK and set θ = η , h = (π, m̄),

M(θ ,h) = Ψη(η ,π, m̄), and Mn(θ ,h) = Ψ
η
n (η ,π, m̄).

We first use Theorem 1 in CLK to show the consistency of η̃ . Condition (1.2) in CLK

is satisfied because Λ is compact, and Ψη(η ,πo, m̄o) has a unique zero and is continuous by

our second condition in Theorem C.1. As for Condition (1.3) of CLK, we can easily see from

the expression of Ψ that it is continuous with respect to m̄ j,z and πz (since πz is bounded away

from zero), and the uniformity in η follows from the fact that E
[
m(Y ∗,η)

]
is bounded as a

function of η . Condition (1.4) of CLK is satisfied by the assumption of Theorem C.2. The

uniform stochastic equicontinuity condition (1.5) of CLK is implied by Lemma C.3. Therefore,

η̃ = ηo +op(1).
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We use Corollary 1 (which is based on Theorem 2) in CLK to show the consistency of V̂

and the asymptotic normality of η̂ . Condition (2.2) in CLK is verified by the assumptions of

Theorem C.1. Similar to the proof of Proposition 3.3, we can show that the moment condition

Ψη , based on the EIF, satisfies the Neyman orthogonality condition for the nuisance parameters

π and mZ . In fact, for any j and z, we let πr
z = πo

z (X)+ r(πz(X)−πo
z (X)) and m̄r

j,z(X ,η) =

m̄o
j,z(X ,η)+ r

(
m̄ j,z(X ,η)− m̄o

j,z(X ,η)
)

. Then we have

d
dr

E

[
1{Z = z}

πr
z (X)

(
m j(Y,η)1{T = t j}− m̄r

j,z(X ,η)
)
+ m̄r

j,z(X ,η)

]∣∣∣∣∣
r=0

= E

− 1{Z = z}(
πo

z (X)
)2

(
πz(X)−π

o
z (X)

)(
m j(Y,η)1{T = t j}− m̄o

j,z(X ,η)
)

+
(

m̄o
j,z(X ,η)− m̄ j,z(X ,η)

)(1{Z = z}
πo

z (X)
−1

)= 0,

where we have applied the law of iterated expectations and used the fact that

E

[
1{Z = z}

πo
z (X)

(
m j(Y,η)1{T = t j}− m̄o

j,z(X ,η)
)∣∣∣X]= 0.

Thus, the path-wise derivative of Ψη with respect to h = (π, m̄) is zero in any direction. Hence,

Condition (2.3) of CLK is verified. Condition (2.4) in CLK directly follows from our assumptions

of Theorem C.2. The stochastic equicontinuity condition (condition (2.6) in CLK) follows from

Lemma C.3. Lastly, condition (2.6) in CLK is verified using the central limit theorem since the

path-wise derivative is zero. Due to the presence of V̂ , we also need the uniform convergence

condition in Corollary 1 of CLK, which can be verified by using Lemma C.3 and an application

of Theorem 2.10.14 of van der Vaart and Wellner [1996a].

Lastly, to show the consistency of Γ̂, we only need to show that

1
n

n

∑
i=1

∂

∂η
m̂ j,t j,z(Xi, η̂)

p→ E
[

∂

∂η
m̂ j,z(X ,ηo)

]
=

∂

∂η
E
[
m̂ j,z(X ,ηo)

]
,
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where the inequality follows from the differentiation under integral operation which holds under

the last assumption of the theorem. The convergence in probability follows from the uniform

convergence of ∂

∂η
m̂ j,z and the consistency of η̂ . Therefore, the desired convergence results

follow.
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