- Main
Ferroelectric tunnel junctions integrated on semiconductors with enhanced fatigue resistance.
Abstract
Oxide-based ferroelectric tunnel junctions (FTJs) show promise for nonvolatile memory and neuromorphic applications, making their integration with existing semiconductor technologies highly desirable. Furthermore, resistance fatigue in current silicon-based integration remains a critical issue. Understanding this fatigue mechanism in semiconductor-integrated FTJ is essential yet unresolved. Here, we systematically investigate the fatigue performance of ultrathin bismuth ferrite BiFeO3 (BFO)-based FTJs integrated with various semiconductors. Notably, the BFO/gallium arsenide FTJ exhibits superior fatigue resistance characteristics (>108 cycles), surpassing the BFO/silicon FTJ (>106 cycles) and even approaching epitaxial oxide FTJs (>109 cycles). The atomic-scale fatigue mechanism is revealed as lattice structure collapse caused by oxygen vacancy accumulation in BFO near semiconductors after repeated switching. The enhanced fatigue-resistant behavior in BFO/gallium arsenide FTJ is due to gallium arsenides weak oxygen affinity, resulting in fewer oxygen vacancies. These findings provide deeper insights into the atomic-scale fatigue mechanism of semiconductor-integrated FTJs and pave the way for fabricating fatigue-resistant oxide FTJs for practical applications.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-