Neural Network-Based Ranging with LTE Channel Impulse Response for Localization in Indoor Environments
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Neural Network-Based Ranging with LTE Channel Impulse Response for Localization in Indoor Environments

Abstract

A neural network (NN)-based approach for indoor localization via cellular long-term evolution (LTE) signals is proposed. The approach estimates, from the channel impulse response (CIR), the range between an LTE eNodeB and a receiver. A software-defined radio (SDR) extracts the CIR, which is fed to a long short-term memory model (LSTM) recurrent neural network (RNN) to estimate the range. Experimental results are presented comparing the proposed approach against a baseline RNN without LSTM. The results show a receiver navigating for 100 m in an indoor environment, while receiving signals from one LTE eNodeB. The ranging root-mean squared error (RMSE) and ranging maximum error along the receiver's trajectory were reduced from 13.11 m and 55.68 m, respectively, in the baseline RNN to 9.02 m and 27.40 m, respectively, with the proposed RNN-LSTM.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View