Skip to main content
eScholarship
Open Access Publications from the University of California

Metal Oxide vs Organic Semiconductor Charge Extraction Layers for Halide Perovskite Indoor Photovoltaics

Abstract

Halide perovskite indoor photovoltaics (PVs) are highly promising to autonomously power the billions of microelectronic sensors in the emerging and disruptive technology of the Internet of Things (IoT). However, how the wide range of different types of hole extraction layers (HELs) impacts the indoor light harvesting of perovskite solar cells is still elusive, which hinders the material selection and industrial-scale fabrication of indoor perovskite photovoltaics. In the present study, new insights are provided regarding the judicial selection of HELs at the buried interface of halide perovskite indoor photovoltaics. This study unravels the detrimental and severe light-soaking effect of metal oxide transport layer-based PV devices under the indoor lighting effect for the first time, which then necessitates the interface passivation/engineering for their reliant performance. This is not a stringent criterion under 1 sun illumination. By systematically investigating the charge carrier dynamics and sequence of measurements from dark, light-soaked, interlayer-passivated device, the bulk and interface defects are decoupled and reveal the gradual defect passivation from shallow to deep level traps. Thus, the present study puts forward a useful design strategy to overcome the deleterious effect of metal oxide HELs and employ them in halide perovskite indoor PVs.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View