Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Comparison of reduced models for blood flow using Runge–Kutta discontinuous Galerkin methods

Abstract

One-dimensional blood flow models take the general form of nonlinear hyperbolic systems but differ in their formulation. One class of models considers the physically conserved quantities of mass and momentum, while another class describes mass and velocity. Further, the averaging process employed in the model derivation requires the specification of the axial velocity profile; this choice differentiates models within each class. Discrepancies among differing models have yet to be investigated. In this paper, we comment on some theoretical differences among models and systematically compare them for physiologically relevant vessel parameters, network topology, and boundary data. In particular, the effect of the velocity profile is investigated in the cases of both smooth and discontinuous solutions, and a recommendation for a physiological model is provided. The models are discretized by a class of Runge-Kutta discontinuous Galerkin methods.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View