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4Texas Children’s Hospital, Department of Pediatric Medicine–Cardiology

Abstract

One–dimensional blood flow models take the general form of nonlinear hyperbolic systems but 

differ in their formulation. One class of models considers the physically conserved quantities of 

mass and momentum, while another class describes mass and velocity. Further, the averaging 

process employed in the model derivation requires the specification of the axial velocity profile; 

this choice differentiates models within each class. Discrepancies among differing models have yet 

to be investigated. In this paper, we comment on some theoretical differences among models and 

systematically compare them for physiologically relevant vessel parameters, network topology, 

and boundary data. In particular, the effect of the velocity profile is investigated in the cases of 

both smooth and discontinuous solutions, and a recommendation for a physiological model is 

provided. The models are discretized by a class of Runge–Kutta discontinuous Galerkin methods.

Keywords

flat profile; no—slip profile; computational hemodynamics; discontinuous Galerkin; shock

1. Introduction

In this paper, we compare several variants of reduced blood flow models expressed as 

nonlinear hyperbolic systems of conservation laws in one space dimension (the axial 

dimension of the blood vessel). We organize the models into two classes: (1) the (A, Q) 

system and (2) the (A, U) system modeling vessel cross–sectional area A and average fluid 

momentum Q or average axial velocity U, respectively. We remark that the (A, Q) system 

models the physically conserved variables of mass and momentum. The velocity, however, is 

never conserved in physical problems, and this is why the (A, U) system does not follow that 

physical principle. Each class requires the specification of the axial velocity profile as a 

closure to the averaging process to completely determine the governing equations. Following 

the terminology of Hughes, we consider problems where either a flat profile (axial velocity 

equal to its average) or a no–slip profile (axial velocity at the vessel wall is zero) is chosen 

[19]. Models and terminology will be made more precise in the next section.
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Despite popularity of reduced models for blood flow in a variety of research contexts (see 

e.g. [31, 14, 29, 35]), there is little work presenting a systematic comparison of different 

models using state–of–the–art numerical techniques. Further, to the best of our knowledge, 

many papers studying these models, for both theoretical investigation and clinical 

applications, use a simplifying flat velocity profile in the convective part of the equations; 

we call these flat–profile models. As will be made explicit in the next section, flat–profile 
models are inconsistent with a first principles derivation of the reduced equations, and we 

are interested in understanding the limits of this model that is popular in the literature.

The literature on reduced blood flow models is vast, due to the fact that simulations are 

much cheaper than full three–dimensional models of the circulatory system and that they 

perform relatively well in models of vessel networks when compared to physiological data 

[38, 30]. In particular, reduced models serve as an important component of “geometric 

multi–scale models,” in which three–dimensional equations describe local phenomena while 

one– and zero–dimensional equations capture dynamics in the rest of the hemodynamic 

system [7, 17, 32].

We give a brief review of literature on models for the axial velocity profile and usage of the 

(A, Q) and (A, U) systems. Several authors have investigated different models for the axial 

velocity profile. Early work of Hughes and Lubliner provided a presentation of now popular 

classes of reduced blood flow models [20, 19]. In particular, Hughes derived jump 

conditions for various models arising from flat and no–slip profiles and exhibited numerical 

experiments comparing different models in a single vessel using Lax–Wendroff–type 

discretizations [19]. Later work by Bessems et. al., using a variant of the (A, Q) system, 

extended the work of Hughes and Lubliner by describing a novel velocity profile with time 

dependent core and outer layer. [20, 6]. In certain limiting cases, their profile aligns with the 

model from Hughes and Lubliner. These authors performed numerical experiments in a 

single vessel, comparing their model with a profile derived from Poiseuille flow [6]. Lastly, 

Azer and Peskin constructed a profile from Womersley flow and presented numerical results 

in a single vessel and vessel network [4]. Using the Lax–Wendroff scheme to approximate a 

version of the (A, U) system, they compared their profile with different models for viscosity 

and with either “pure–resistance” or “structured–tree” outflow conditions at the terminal 

vessels [4].

For work utilizing the (A, U) class of systems, see e.g. [10, 1, 34, 35, 29, 24, 8]. Some 

examples of research using the (A, Q) system with a flat–profile closure include [26, 39, 31, 

36, 30, 16, 12, 37]. A portion of these papers, including work from Formaggia et al., 

Sherwin et al. and Delestre and Lagrée are focused on careful descriptions of discontinuous 

Galerkin, Taylor Galerkin, and finite–volume schemes for these models; the flat–profile 

assumption is appealing in this context since these discretizations rely on the expression of 

the equations in conservative form [16, 35, 12]. Other works employing flat–profile models 

attempt to answer clinical questions, perform physiologically relevant experiments, and 

validate the models with measured data [30, 29, 24]. Lastly, there has been recent interest in 

performing systematic comparisons of different numerical schemes applied to flat–profile 

models [37, 8].
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We remark that systems with a flat profile closure contain mathematical simplifications that 

lend to their appeal. In particular, the Riemann invariants can be analytically computed and 

the (A, U) system can be expressed in conservative form. Important theoretical work 

regarding these models include existence of smooth solutions, estimates for shock 

formation, and analysis of coupling with the three–dimensional Navier–Stokes equations or 

ordinary differential equation models of the heart and organ beds [9, 14, 13].

The first novel contribution of this paper is to present thorough numerical experiments for 

the comparison reduced blood flow models derived from flat profile and no–slip profiles, in 

which the shape of the axial velocity profile is allowed to vary. In particular, we investigate 

the effect of profile shape on flow and pressure waveforms by considering both the (A, Q) 

and (A, U) systems; to the best of our knowledge, a comparison of these systems has not 

been done before. We use a discontinuous Galerkin scheme with Runge–Kutta method in 

time in a large vessel network and compare simple reflection terminal boundary conditions 

and more physiological three element windkessel terminal boundary conditions. In our 

simulations we compare two different numerical fluxes: (1) an upwinding flux in the 

Riemann invariants and (2) the classical local Lax–Friedrichs flux. Further, we run 

experiments in long vessels to study the formation of shocks in both the (A, Q) and (A, U) 

systems; this phenomena is of interest in modeling physiological conditions where sharp 

transitions may occur, like aortic regurgitation [3, 33, 21].

The second important contribution of this paper is a novel result on the symmetrizability of 

the (A, Q) and (A, U) systems. This perspective provides a way to theoretically differentiate 

these systems, and also may be important in deriving convergence estimates for Runge–

Kutta discontinuous Galerkin (DG) discretizations of hyperbolic systems [40, 23]. These 

results provide a first step towards analyzing fully discrete approximations schemes for 

viscous blood flow, vessel networks, and dimensionally heterogenous models of the 

hemodynamic system (see e.g. [13] for PDE level analysis for 1d/0d coupled models).

The outline of the paper is as follows. The (A, Q) and (A, U) systems are described in the 

next two sections. Section 4 presents the numerical scheme and states the results on 

symmetrizability. The treatment of boundary conditions for vessel networks is given in 

Section 5. Numerical simulations are presented in Section 6. In particular, we begin by 

verifying the numerical scheme in Subsection 6.1 using the method of manufactured 

solutions to compute error rates. Then, in Subsection 6.2 we check the consistency of our 

results with those from Sherwin et al. [35]. Next, in Subsection 6.3, using nonphysiological 

input data from [35], we compare reflection conditions for the terminal vessels with more 

physiological three element windkessel conditions which incorporate a capacitor to model 

the compliance of the distal vessels and organ beds. We then employ the vessel network 

from [35], with three element windkessel boundary conditions and physiological boundary 

data, to compare smooth solutions obtained from the (A, Q) and (A, U) systems for different 

choices of the velocity profile and different numerical fluxes. Finally, we study the (A, Q) 

and (A, U) systems in the realm of discontinuous solutions using aortic regurgitation data. 

Versions of the systems used in these simulations appear throughout the literature, and have 

yet to be systematically compared.
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2. Details of the (A,Q) and (A,U) systems

An asymptotic reduction argument from the three–dimensional incompressible axially 

symmetric Navier–Stokes equations results in the following set of equations (see e.g. [5, 9]):

(1)

(2)

Here, vessels are assumed to be long and slender, Rv is the radius and  the cross-

sectional area. In addition, ux = ux(x, r, t) is the velocity in the axial direction, ν := μ/ρ is the 

kinematic viscosity (with μ the dynamic viscosity) and Q := AU, where U = U(x, t) is the 

axial velocity ux averaged over a cross-section, namely

(3)

The function α = α(x, t) is called the Coriolis coefficient and is defined

(4)

To close the system, the axial velocity ux needs to be specified. As is typical in most of the 

literature, we assume the following ad hoc closure:

(5)

Other choices for this closure can also be made, as described in the introduction. It follows 

from this equation that ux over a cross-section is equal to U(x, t) and the no-slip boundary 

condition is satisfied, i.e. ux(x, R, t) = 0. In this light, some authors refer to this selection as 

corresponding to the no–slip theory for reduced blood flow equations [19]. Plugging (5) in 

(4), we obtain the formula

(6)
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In particular, α is a constant, greater than 1, determined by the profile we select. The system 

(1)–(2) simplifies to

(7)

The (A, U) system follows from (7) by substituting Q = AU, setting α = 1 only in the 

convective part of the equations, and performing some manipulation that is well defined 

when both A and U are smooth in time and space. Note that to interchange derivatives, we 

must assume some smoothness on A and U. One obtains:

(8)

In the case of inviscid flow with ν = 0, the fluid feels no effect from the vessel wall, 

rendering the axial component of the velocity constant in the radial direction. This 

corresponds to a flat profile closure: ux(x, r, t) = U(x, t) and in this case, one obtains α = 1 

(see e.g [9]). Then, the inviscid (A, Q) system is given:

(9)

and the inviscid (A, U) system is:

(10)

We emphasize the inviscid (A, Q) and (A, U) systems given in equations (9) and (10) are 

equivalent for smooth solutions. In contrast, systems (7) and (8) are not equivalent, even 

though both models are widely used in the literature with varying choices of α > 1.

The flat profile closure allows for the explicit calculation of the Riemann invariants for both 

the (A, U) and (A, Q) systems, described in the next section. In our numerical computations, 

we consider the inviscid systems in addition to two different values for the parameter α: 1.1 

and 4/3. The choice α = 4/3 corresponds to a parabolic profile, while the choice α = 1.1 

yields a flatter, and some argue, more physiological profile. These two values are used in the 

current study since both appear throughout the literature. Below, when referring to different 

versions of the (A, Q) and (A, U) systems, we use α = 1 to correspond to the inviscid 

systems (9) and (10).
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3. Conservative and quasilinear forms

3.1. Derivation of different forms

In this section we derive conservative and quasilinear equations given the following form of 

the state equation for the vessel law that closes the systems (7)–(10):

(11)

where A0 and β are specified parameters, and p0 is the pressure when A = A0. The function 

ψ is a monotone increasing function of A. For the derivations below, it is assumed that β and 

A0 are constants, but in reality they may depend on x. For convenience, define the following 

notation for the physical variables:

(12)

Further, let:

(13)

For some function F : ℝ2 → ℝ2 depending on variables U, we use the following notation 

for the Jacobian:

(14)

Through simple differentiation, the (A, Q) system in conservative form with flux function 

and source function  is

(15)

Further manipulation reveals the quasilinear form:

(16)

The conservative form for the (A, U) system is:
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(17)

and the quasilinear form is

(18)

3.2. Riemann Invariants for inviscid models

To impose boundary conditions and mathematically model vessel junctions, we use the 

Riemann invariants of the inviscid (A, Q) and (A, U) systems. From this point forward, to 

calculate explicit formulas for the invariants, we fix the following form for the state 

equation:

(19)

Here β is a constant strictly greater than zero. This equation models the elastic properties of 

arterial walls as a linear elastic membrane [25]. There are other possible definitions for ψ in 

the literature; see for instance [27]. Further, define the function:

(20)

For the (A, Q) system, one computes the eigenvalues  and left eigenvectors 

 of the Jacobian (see e.g. [15])

(21)

as

(22)
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(23)

By definition, the Riemann invariants  are functions whose gradients  are 

parallel to the left eigenvectors. With the formula for ψ, by integration and setting constants 

to zero, one obtains:

(24)

The Riemann invariants can be shifted by a constant; in implementing reflecting boundary 

conditions, we employ invariants shifted by the constant 4c(A0) so that they vanish when (A, 
Q) = (A0, 0). Later on, for the definition of some numerical fluxes in the DG scheme, we 

will need the formula for the eigenvalues of the Jacobian of the (A, Q) system with arbitrary 

α. These are given by

(25)

Similar calculations reveal the eigenvalues and Riemann invariants for the inviscid (A, U) 

system:

(26)

(27)

4. Numerical discretization

4.1. DG formulation and time discretization

Let us describe the discontinuous Galerkin formulation we implement for a general 

hyperbolic system in conservative form, namely:

(28)

(29)
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Let the collection of intervals  be a uniform partition of the interval [0, L], with Ie = 

[xe, xe+1] of size h. Let  be the space of polynomials of degree k on the interval Ie. The 

approximation space is

(30)

Define the notation for traces of a function ϕ : [0, L] → ℝ to the interior boundaries of the 

intervals:

(31)

(32)

(33)

Lastly, define

(34)

(35)

The semi–discrete formulation is given as follows: seek  satisfying

(36)

for all  and e = 0, …, N.

The function Fnf(Uh) yet to be defined is the numerical flux. The following definitions are 

used in all cases except at a junction of vessels in a network (below we provide the definition 

of the numerical flux in this case). For boundary conditions, we denote:

(37)
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(38)

The average of the flux function at the interface between elements is:

(39)

(40)

(41)

The jump of the discrete function Uh at an interface is:

(42)

(43)

(44)

Lastly, let the symbols λi (i = 1, 2) be the eigenvalues of the Jacobian of F and denote:

(45)

(46)

(47)
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(48)

We will compare two different fluxes. The first one is the local Lax–Friedrichs flux (LLF) 

given by:

(49)

For a description of this numerical flux and others used for hyperbolic systems, see the work 

of Cockburn et al. [11].

The second flux is the upwinding flux (UP), determined by “upwinding” in the Riemann 

invariants given by the inviscid systems, i.e. equations (24) and (27). This flux was defined 

and used in the work of Sherwin et al. [35]. In order to define this flux, we must make some 

general assumptions that are satisfied by the reduced blood flow models considered in this 

paper. First, assume that we can view the Riemann invariants as functions of physical 

variables Wi = Wi(U) (i = 1, 2) and vice versa U = U(W1, W2). Further, assume λ1 > 0 and 

λ2 < 0.

This numerical flux is computed in several steps. First, compute the invariants

(50)

(51)

(52)

(53)

and then the physical variables

(54)

The flux is defined by evaluating the flux function at these upwinded values of the physical 

variables:
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(55)

For the time discretization, we employ a second order Runge–Kutta scheme [40]. Let the 

time step be denoted by Δt and the final time be T. Define M = T/Δt and assume for 

simplicitly it is an integer. The fully discrete form is as follows: For n = 1, …, M − 1, given 

, compute  and  in  satisfying

(56)

(57)

for all  and e = 0, …, N.

4.2. Symmetrizability

The notion of symmetrizability for systems of conservation laws appears to simplify 

numerical analysis; see e.g. [40, 23] for an application of this idea to study Runge–Kutta 

discontinuous Galerkin approximations. Further, it is a reasonable assumption for systems 

modeling physical phenomena, and has been shown to be equivalent to the existence of a so–

called convex entropy function [18]. More concretely, to demonstrate symmetrizability, one 

seeks a transformation from entropy variables V to the physical variables U so the Jacobian 

UV is symmetric positive definite (SPD) and FV = FUUV is symmetric. Then, with zero 

source term, the conservation law takes the form:

(58)

One can show under reasonable assumptions that an entropy function derived from the 

energy of the system symmetrizes the equations for reduced blood flow. The entropy for the 

inviscid models was derived by Formaggia et al. [14]:

(59)

(60)
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Lemma 1—If A(x, t) > δ > 0 for (x, t) ∈ [0, L] × [0, T], the inviscid (A, Q) system is 

symmetrizable.

Proof: With the physical variables U = [A, Q]T, following Harten’s work [18], the entropy 

variables V = [V1, V2]T are:

(61)

(62)

The definition of the entropy variables defines a transformation U → V(U). The inverse of 

this transformation, denoted U(V), will symmetrize the equations. Recall the notation and 

assumption on ψ:

(63)

So the function ψ′ is positive since A > δ > 0. Here is the Jacobian of V(U):

(64)

Its determinant and trace are:

(65)

(66)

It is clear that the determinant and trace are both positive, proving that VU is SPD. Thus, the 

inverse UV is also SPD. Lastly, using the form of FU given in (16) with α = 1, one sees that

(67)
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(68)

verifying the matrix is symmetric.     □

Lemma 2—If A(x, t) > δ > 0 and |U(x, t)| < c(A(x, t)) for (x, t) ∈ [0, L] × [0, T], the 

inviscid (A, U) system is symmetrizable.

Proof: The proof follows closely the proof of the previous lemma. Let U = [A, U]T. From 

the entropy function given above, define the transformation as

(69)

(70)

The Jacobian is

(71)

Its determinant and trace are

(72)

(73)

where c = c(A) is the speed appearing in the formula for the convective velocity of the 

Riemann invariants. The additional assumption that |U| < c implies the determinant is 

positive. Since the trace is positive, VU is SPD, so its inverse UV is SPD. Lastly, symmetry is 

verified using FU from (18):

(74)
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(75)

     □

Notice this perspective theoretically differentiates the (A, Q) and (A, U) models, i.e. 

verification of symmetrizability for the (A, U) model requires the additional assumption |U| 

< c(A) rendering the (A, U) system strictly hyperbolic. To comment briefly on numerical 

analysis with symmetrizability: the authors in [40, 23] estimate the error in a norm 

depending on UV; smoothness of the exact solutions and the SPD assumption allow one to 

conclude that this norm is equivalent to the L2 norm used in the estimate. Further, the 

numerical flux must be in the class of generalized E–fluxes, and the local–Lax Friedrichs 

flux falls in this class.

5. Boundary Conditions

We employ standard approaches for boundary conditions in the form of Dirichlet data, at 

vessel junctions in a network, and at the terminal vessels of a network. These conditions are 

summarized below.

5.1. Dirichlet data

We describe the process for imposing Dirichlet boundary data Uinlet at the inlet x0 for the 

(A, Q) class of systems. An analogous approach may be used for outlet data and for the (A, 

U) class of systems.

This process relies on the Riemann invariants Wi (i = 1, 2) derived in Section 3.2. At time 

step n, suppose we presribe the area . The corresponding value for the fluid momentum 

at the inlet  is determined by first extrapolating the right–to–left moving Riemann 

invariant to the boundary using the solution at the previous time step :

(76)

with

(77)

We use the value of the approximated Riemann invariant at the boundary and rearrange the 

formula to solve for the fluid momentum.

(78)
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This process determines the Dirichlet boundary conditions at the inlet, Uinlet, that are then 

built into the numerical flux function as described above. A similar approach may be used 

for prescribing the fluid momentum  or the left–to–right moving invariant  at 

the inlet of the vessel.

5.2. Vessel junctions

Boundary conditions at vessel junctions are determined by holding constant the values of the 

Riemann invariants and enforcing continuity of total pressure and conservation of fluid 

momentum. More precisely, suppose at a junction there are Nin incoming vessels and Nout 

outgoing vessels. We need to determine the values of the physical variables at the incoming 

vessels  and at the outgoing vessels . For 

simplicitly of presentation, we diverge from our previous notation and let  and 

denote the traces of the Riemann invariants at the incoming and outgoing vessels 

respectively. The requirements at the vessel junction may be specified mathematically in the 

following nonlinear system of algebraic equations [15]:

(79)

(80)

(81)

(82)

(83)

These equations are solved with Newton’s method. The definition of the numerical flux at a 

vessel junction is different from above and is redefined as follows: at the outlet of the 

incoming vessels it is defined as
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(84)

Similarly, at the inlet of the outgoing vessels we have:

(85)

5.3. Reflection boundary conditions for terminal vessels

For code validation with the fifty–vessel network given in [35], we employ reflection 

boundary conditions used by these authors at terminal vessels in the network. More 

specifically, at the outlets of the terminal vessels in a given network, we expect reflections 

due to the resistive nature of organ beds. Described below is a simple approach for resistance 

boundary conditions using the Riemann invariants of the inviscid systems [35]. The 

Riemann invariants for the inviscid (A, Q) system satisfy the following system:

(86)

(87)

Assuming that λ1 remains positive and λ2 remains negative, this system is well-defined 

when  is specified at the inlet of the vessel (x = 0) and  is specified at the outlet (x = 

L) of the vessel. Prescribing  on the outlet yields no effect on the 

characteristic variables in the interior of the domain. Alternatively, one may specify an outlet 

boundary condition depending on the incoming characteristic, i.e. for some 0 ≤ R ≤ 1, let

(88)

(89)

The above equations allow us to specify the values of the physical variables to the right of 

the outlet, A+|L, Q+|L, given the known values to the left of the outlet, A−|L, Q−|L. Consider 

the following definition of the Riemann invariants now shifted by the constant c0 = c(A0).
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(90)

With this definition, (88) and (89) become the following:

(91)

(92)

The numerical flux at x = L is then evaluated at these values. Similarly for the (A, U) 

system, one has

(93)

(94)

5.4. Three element windkessel boundary conditions for terminal vessels

For a physiologically meaningful comparison of the (A, Q) and (A, U) systems, we employ a 

three element windkessel boundary condition at the end of each terminal vessel. This 

terminal model, mathematically described by an RC circuit, accounts for both organ bed 

resistance and compliance. A schematic, adapted from [8], is given in Figure 1. Ohm’s and 

Kirhchoff’s laws for this model are given respectively:

(95)

(96)

At the nth timestep, given  and An, Qn evaluated at the outlet of the terminal vessel, , 

An+1, Qn+1 are computed as the solution to the following system:
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(97)

(98)

(99)

This approximation is the same as the process described in [2] except we use backward 

Euler to discretize the differential equation for PC. The numerical flux at x = L is evaluated 

at An+1, Qn+1.

6. Results

In this section, we present the numerical results of the paper. Subsections 6.1 and 6.2 consist 

of a verification of the numerical scheme, first by using the method of manufactured 

solutions and second by checking that our results are consistent with those obtained by 

Sherwin et al. in a vessel network [35]. Next in Subsection 6.3, we contrast two different 

terminal boundary conditions using this vessel network: reflection and three element 

windkessel conditions. Windkessel boundary conditions are expected to be more 

physiological than reflection boundary conditions since they incorporate a capacitance as 

well as two resistances, in order to simulate the capability of an organ bed to hold blood. We 

note that the input data for the simulation in Subsection 6.3 is nonphysiological. In the 

following section (Subsection 6.4), we use a physiological input data (obtained from [8, 28]) 

for the momentum at the ascending aorta. In this case, we compare smooth solutions of the 

(A, Q) and (A, U) systems as α varies, and for two different types of the numerical flux. The 

final simulations in Subsection 6.5 compare these systems for discontinuous solutions, using 

inlet boundary data from a patient with aortic regurgitation.

6.1. Convergence rates for numerical scheme

We use the method of manufactured solutions to obtain numerical convergence rates for the 

spatial discretization of the scheme. The results presented here are only for the (A, Q) 

system, but we observe similar results for the (A, U) system. The domain is the unit interval 

and the exact solution is chosen as:

(100)
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(101)

The errors in the L2 norm between the approximate and exact solution are computed on a 

sequence of uniformly refined meshes (from h = 1/2 to h = 1/32). Numerical convergence 

rates are derived from the numerical errors. We also study the effect of the approximation 

order by varying the polynomial degree (k = 1, 2, 3). For these computations, Δt = 2 × 10−5, 

small enough for the temporal error to be negligible, and the scheme is evolved for ten 

timesteps.

Table 1 and Table 2 show the errors and rates for the inviscid (A, Q) system for the DG 

method with the upwinding flux. We observe that we recover the convergence rate k +1 for 

polynomial degree k, which is the optimal convergence rate for a scalar hyperbolic 

conservation law in one dimension, as noted in [40]. For general systems of conservation 

laws, the theoretical rates are suboptimal, as described in [40]. For comparison, in Table 3 

and Table 4, we repeat the experiments for the DG method with the local Lax-Friedrichs 

flux. Similar conclusions can be made. The choice of the numerical flux does not have any 

effect on the errors or rates.

According to [40] and the symmetrizability results in this paper, the theoretical rates apply 

only to the DG approximation of inviscid reduced blood flow models with the local Lax–

Friedrichs flux. We next investigate the numerical rates for the general (A, Q) system with α 
= 1.1. Similar results are obtained when we choose α = 4/3, and we omit them for brevity. 

Table 5 and Table 6 show the errors and rates, with the same set-up as the previous 

experiments. The upwinding flux is used. The numerical rates are optimal. Theoretical error 

estimates remain an open question. Table 7 and Table 8 show optimal rates for the case of 

the local Lax-Friedrichs flux. Results are comparable to those obtained with the upwinding 

flux.

In this subsection, we verify our numerical scheme by simulating blood flow in a fifty–five 

vessel network and comparing with results from [35]. We provide results for both the 

inviscid (A, Q) and inviscid (A, U) systems in this section. The incoming Riemann invariant 

W1 is prescribed at the inlet of the ascending aorta, and the reflection boundary conditons 

(88) and (89) are used at the outlets of the terminal vessels. Figure 2 displays the vessel 

network and the inlet boundary condition. Vessel parameters are taken from [35]. The 

numerical parameters are Δt = 10−4 s, h = 1 cm, k = 1, and the numerical flux is the 

upwinding flux. The physical parameters are ν = 0 cm2/s and p0 = 75 mmHg.

The waveforms displayed are obtained during the tenth cardiac cycle at the inlet of the left 

femoral and left anterior tibial vessels. We plot results for the (A, U) system in Figures 3 and 

4 and the (A, Q) system in Figures 5 and 6. Also plotted in circles are data taken from the 

waveforms in [35] obtained with different polynomial degree and timestep. We observe 

excellent agreement between our results and those from [35].
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6.2. Comparison of waveforms obtained with windkessel and reflection boundary 
conditions

In this subsection, we study the effect of different terminal boundary conditions on the 

waveforms. We compare the reflection boundary conditions given in equations (88) and 

(89), with three element windkessel boundary conditions specified by equations (95) and 

(96). The parameters for the windkessel boundary conditions are taken from [8] and for the 

reflection boundary condition from [35]. The vessel network and inlet boundary data are the 

same as in the previous section. The numerical parameters are Δt = 10−4 s, h = 1 cm, k = 1, 

and the numerical flux is the upwinding flux. The physical parameters are ν = 0 cm2/s, p0 = 

75 mmHg, and Pout = 0 mmHg.

In Figures 7–10, the solid line waveforms are produced with the reflection boundary 

condition and the dashed line waveforms are produced with the three element windkessel 

model. Figures 7 and 8 are from the (A, U) system and Figures 9 and 10 are from the (A, Q) 

system. First, we note that the waveforms from either (A, Q) or (A, U) are similar for a given 

choice of boundary conditions. Second, we observe that both terminal boundary conditions 

produce different waveforms with relative similar shape and magnitude. The reflection 

conditions create higher frequency oscillations while the windkessel model yields distinctly 

smoother features. Since the oscillations from the reflection conditions are arguably less 

physiological, we use the windkessel conditions in the remainder of the paper.

6.3. Fifty–five vessel network with physiological inlet data

In this subsection, we study the effect of changing the shape of the velocity profile 

(changing α) on waveforms produced by the (A, Q) and (A, U) systems with physiological 

inlet data. For this simulation, we use the fifty–five vessel network and windkessel boundary 

conditions described in the previous section. The inlet condition at the ascending aorta is the 

momentum Q given in Figure 11 and is obtained from experimental data [8, 28]. The 

numerical parameters are Δt = 10−4 s, h = 1 cm, and k = 1. The physical parameters are ν = 

3.302 × 10−2 cm2/s, p0 = 75 mmHg, and Pout = 0 mmHg.

Figures 12 and 13 compare flow and pressure waveforms obtained throughout the network 

with the (A, Q) system for α values 1, 4/3, and 1.1. In Figures 14 and 15, we show the same 

comparison for the (A, U) system. Figures 16 and 17 compare waveforms between the (A, 

Q) and (A, U) systems for α = 4/3, and Figures 18 and 19 show the same comparison but for 

α = 1.1.

We observe similar discrepancies in the waveforms for both the (A, Q) and (A, U) systems 

for different values of α. For the Poiseuille profile corresponding to α = 4/3, the viscous 

term is smaller than for the flatter profile corresponding to α = 1.1. This difference yields 

waveforms with higher magnitude pressure gradients and oscillations for α = 4/3; see for 

example the radial and subclavian arteries. Further, note that most of the waveforms 

corresponding to α = 4/3 exhibit a lower mean pressure, especially for the larger arteries. 

This difference could be explained by the fact that a fluid with lower viscosity (α = 4/3) 

moves more easily through a compliant cylinder and therefore renders a lower mean 

pressure.

Puelz et al. Page 21

Appl Numer Math. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The case α = 1 in Figures 12–15 refers to inviscid versions of the (A, Q) and (A, U) systems 

defined in equations (9) and (10). In this case the profile is flat and the kinematic viscosity is 

equal to zero. Pressure gradients and oscillations in the waveforms are even more 

pronounced in this case.

For a fixed value of α, the (A, Q) and (A, U) systems generally produce waveforms with 

similar features and magnitudes. As expected, the results agree relatively well for α = 1.1, 

since the (A, Q) and (A, U) systems are equivalent for smooth solutions when α is set equal 

to one in the convective part of the (A, Q) system. However, when α = 4/3, there are some 

discrepancies between these systems since they differ more in the convective term.

Lastly, we compare results obtained with the local Lax–Friedrichs (LLF) and upwinding 

(UP) numerical fluxes in Figures 20 and 21. The (A, Q) system with α = 1.1 is used; results 

are similar for the (A, U) system and other values of α. The upper subfigure displays the 

waveforms from each numerical flux, and the lower subfigure displays the pointwise relative 

difference between the waveforms. This difference is computed by normalizing by the 

maximum norm of the waveform produced by the LLF flux and is quite small (~ 10−5).

6.4. Shock formation in the subclavian artery

In this subsection, we are interested in the effect of changing the Coriolis coefficient α 
among different models in the realm of solutions with possible shocks, i.e. a discontinuity in 

the pressure. Bloodflow waveforms are typically smooth in healthy individuals, but doctors 

speculate that a faulty heart produces flows that have the capacity to form sharp transitions 

within the body. An important problem potentially leading to nonsmooth waveforms is aortic 

regurgitation, characterized by an aortic valve which leaks blood back into the left ventricle. 

To compensate for the backflow of blood into the ventricle, the heart works harder and the 

pulse pressure (the difference between the maximum and minimum pressure) increases. 

Interestingly, this pathological problem was important for early work on bloodflow 

modeling: experimental and clinical evidence, including “pistol-shot” sounds in the arteries 

of patients with aortic regurgitation, indicated the importance of nonlinear effects in reduced 

bloodflow equations (see e.g. [22, 3]).

Figure 22 displays a pressure waveform measured in the subclavian artery (denoted 

“subclavian II” in Figure 2) of a patient with aortic regurgitation, taken from [33]. Notice the 

pulse pressure is greater than 100 mmHg, while a typical healthy pulse pressure is 40 

mmHg. The large pulse pressure seen in aortic regurgitation leads to a rapid increase in the 

blood velocity at the beginning of the cardiac cycle, i.e. ∂U/∂t evaluated at the vessel inlet is 

larger than usual. In turn, Canic and Kim derived an estimate on the distance at which a 

shock develops (from the vessel inlet) that depends inversely on ∂U/∂t; hence, we expect a 

shock to form more quickly (closer to the vessel inlet) in this pathological case [9].

We use the waveform in Figure 22 as the inlet boundary condition for the second subclavian 

vessel (“subclavian II”) from the fifty–vessel network given above (mechanical parameters 

for the vessel given in [35]). As with the fifty–five vessel network above, we set p0 = 75 

mmHg for these simulations. The vessel parameters are β = 466000 g cm−2 s−2 and A0 = 

0.51 cm2. The numerical parameters are Δt = 2 × 10−5 s, h = 0.25 cm, k = 1, and the local 
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Lax–Friedrichs flux is used. Further, since we expect the solution to develop sharp 

transitions and possibly shocks, we supplement the discontinuous Galerkin method with the 

minmod slope limiter [11].

In Figure 23, we display the pressure waveforms measured at various distances from the 

vessel inlet for both the inviscid (A, Q) and inviscid (A, U) systems. The results for both 

systems are similar. Note the sharp transition from the minimum to maximum pressure at the 

beginning of each waveform; this transition increases in sharpness farther from the vessel 

inlet. This feature indicates shock formation and also appears in clinical data [33]. Similar 

results are seen in the waveforms for α = 1.1 and α = 4/3.

In Figure 24, we explore the formation of the shock. The panels on the left correspond to the 

(A, Q) system and the panels on the right correspond to the (A, U) system. Each panel 

displays six snapshots in time of pressure as a function of space, where the horizontal axis 

displays distance from the vessel inlet. First, we make the general comment that in all 

models, a sharp transition forms within the length of a typical arm; it is interesting that the 

nonlinearity in the model is able to capture the shock within this distance. This modeling 

supports speculation that “pistol–shot” sounds in the body may indeed result from shock 

formation [33, 22, 3].

Next, we see that for the (A, Q) system, the pressure to the left of the shock on the curve VI 

is greater than 120 mmHg for α = 1, is equal to 120 mmHg for α = 4/3 and is smaller than 

120 mmHg for α = 1.1. This behavior can be explained by an increase in the viscosity term 

as α varies from from 1 to 4/3 to 1.1. The pressure to the left of the shock on the curve VI 

for the (A, U) system varies in the same way. We also comment on the formation of the 

shock as seen in how curves I through V vary in shape. Observe that the shock development 

for the (A, Q) system is similar for the cases α = 1 and α = 1.1 but is different for the case α 
= 4/3. For this value, the shock develops the fastest and appears fully developed in snapshot 

IV. For the (A, U) system, the shock formation is very similar for all values of α.

7. Conclusions

This paper details a systematic comparison of two classes of reduced blood flow models, the 

(A, Q) and (A, U) systems. Models within each class are further characterized by the 

Coriolis coefficient α, which takes different values for different axial velocity profiles. 

Discontinuous Galerkin in space with Runge–Kutta methods in time are used to discretize 

the system of conservation laws. Our results first show that the approximations of pressure, 

momentum and velocity did not depend on the particular choice of numerical flux.

In addition to validating our code with the results from [35] and verifying convergence rates, 

we consider two separate experiments with different boundary conditions: a fifty–five vessel 

network with flow imposed at the inlet of the ascending aorta and a single vessel with 

pressure from a patient with aortic regurgitation imposed at the inlet. In the former 

experiment, the solutions are smooth, and in the latter, solutions exhibit a shock. In both 

cases we consider the effect of varying α on the solutions of the (A, Q) and (A, U) systems, 
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with inviscid flow corresponding to α = 1 and viscous flow corresponding to a Poiseuille 

profile (α = 4/3) or a flatter profile (α = 1.1).

For the fifty–five vessel network, we compare simple reflection terminal boundary 

conditions with three element windkessel boundary conditions. As expected, the results with 

the windkessel boundary conditions do not exhibit high frequency oscillations like we see 

with the reflection boundary conditions. Thus, we employ the windkessel boundary 

conditions when comparing the (A, Q) and (A, U) systems with different values of α.

Our simulations reveal the selection of the Coriolis coefficient α does impact the solution; 

this effect is demonstrated in both the fifty–five vessel network and in the single vessel with 

shock formation. The choice α = 4/3 provides a smaller viscosity term than α = 1.1 and 

produces solutions with higher pressure gradients. In the case α = 1.1, the (A, U) system 

derived from a flat profile assumption compares reasonably well to the (A, Q) system in all 

cases. In light of these observations, the (A, U) system with α = 1.1 is a reasonable choice 

for modeling when the solutions are smooth, but generally we favor the use of the (A, Q) 

system with α = 1.1 since it describes the physically conserved variables.

In the shock formation experiments, the inviscid (A, Q) and (A, U) systems yield the same 

result. In contrast, the models with α > 1 develop shocks in differing locations, although 

these differences are quite small for the (A, U) system since α only appears in the viscous 

term. Knowledge of these discrepancies among models is important for physiological 

applications involving shock formation, like aortic regurgitation.
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Figure 1. 
A schematic of the three element windkessel model used for boundary conditions at the 

outlets of the terminal vessels in the network.
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Figure 2. 
The schematic on the left depicts the topology of the vessel network used throughout this 

paper, from Sherwin et al. [35]. The labels indicate the ascending aorta, where the inlet 

boundary condition is specified, and the femoral and anterior tibial arteries, where 

waveforms are measured. The figure on the right is the inlet boundary condition at the 

ascending aorta, also from [35].
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Figure 3. 
Waveforms from the inviscid (A, U) system (α = 1) obtained at the inlet of the left femoral 

artery. The upwinding numerical flux is used. Our numerical results are plotted with the 

solid line and the circles are data taken from Sherwin et al. [35].
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Figure 4. 
Waveforms from the inviscid (A, U) system (α = 1) obtained at the inlet of the left anterior 

tibial artery. The upwinding numerical flux is used. Our numerical results are plotted with 

the solid line and the circles are data taken from Sherwin et al. [35].
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Figure 5. 
Waveforms from the inviscid (A, Q) system (α = 1) obtained at the inlet of the left femoral 

artery. The upwinding numerical flux is used. Our numerical results are plotted with the 

solid line and the circles are data taken from Sherwin et al. [35].
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Figure 6. 
Waveforms from the inviscid (A, Q) obtained (α = 1) at the inlet of the left anterior tibial 

artery. The upwinding numerical flux is used. Our numerical results are plotted with the 

solid line and the circles are data taken from Sherwin et al. [35].
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Figure 7. 
Waveforms from the inviscid (A, U) system (α = 1) obtained at the inlet of the left femoral 

artery. The upwinding numerical flux is used. Solid line corresponds to results with 

reflection boundary conditions and dashed line corresponds to results with windkessel 

boundary conditions.
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Figure 8. 
Waveforms from the inviscid (A, U) system (α = 1) obtained at the inlet of the left anterior 

tibial artery. The upwinding numerical flux is used. Solid line corresponds to results with 

reflection boundary conditions and dashed line corresponds to results with windkessel 

boundary conditions.
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Figure 9. 
Waveforms from the inviscid (A, Q) system (α = 1) obtained at the inlet of the left femoral 

artery. The upwinding numerical flux is used. Solid line corresponds to results with 

reflection boundary conditions and dashed line corresponds to results with windkessel 

boundary conditions.
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Figure 10. 
Waveforms from the inviscid (A, Q) system (α = 1) obtained at the inlet of the left anterior 

tibial artery. The upwinding numerical flux is used. Solid line corresponds to results with 

reflection boundary conditions and dashed line corresponds to results with windkessel 

boundary conditions.
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Figure 11. 
The plot on the left shows the different velocity profiles compared in this section (with U = 

1), along with the flat profile corresponding to α = 1. The plot on the right depicts boundary 

data for Q at the inlet of the ascending aorta.
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Figure 12. 
A comparison of the momentum waveforms from the (A, Q) system with α = 1, 1.1 and 4/3.
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Figure 13. 
A comparison of the pressure waveforms from the (A, Q) system with α = 1, 1.1 and 4/3.
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Figure 14. 
A comparison of the momentum waveforms from the (A, U) system with α = 1, 1.1 and 4/3.
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Figure 15. 
A comparison of the pressure waveforms from the (A, U) system with α = 1, 1.1 and 4/3.
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Figure 16. 
A comparison of the momentum waveforms from the (A, Q) and (A, U) systems with α = 

4/3.
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Figure 17. 
A comparison of the pressure waveforms from the (A, Q) and (A, U) systems with α = 4/3.
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Figure 18. 
A comparison of the momentum waveforms from the (A, Q) and (A, U) systems with α = 

1.1.
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Figure 19. 
A comparison of the pressure waveforms from the (A, Q) and (A, U) systems with α = 1.1.
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Figure 20. 
A comparison of the momentum waveforms from the (A, Q) system with α = 1.1 for 

different choices of the numerical flux.
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Figure 21. 
A comparison of the pressure waveforms from the (A, Q) system with α = 1.1 for different 

choices of the numerical flux.
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Figure 22. 
Pressure imposed at the vessel inlet, taken from reference [33].
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Figure 23. 
Pressure waveforms measured at various distances from the vessel inlet. The distance from 

the inlet is given in centimeters to the right of each waveform.
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Figure 24. 
The figures on the left are snapshots of pressure at uniformly spaced times: I(0.025 s), 

II(0.05 s), III(0.075 s), IV(0.1 s), V(0.125 s), and VI(0.15 s). Results for the (A, Q) system 

are on the left and for the (A, U) system are on the right. Each row corresponds to a different 

value of α.
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