Skip to main content
Open Access Publications from the University of California
Notice: eScholarship will undergo scheduled maintenance from Tuesday, January 21 to Wednesday, January 22. Some functionality may not be available during this time. Learn more at eScholarship Support.
Download PDF
- Main
Principal Component Analysis of Categorical Data, with Applications to Roll-Call Analysis
Abstract
So far, many ad hoc techniques have been proposed to compute maxium likelihood estimates for various specific models. Some work well, some don't. Our purpose in this presentation is to present a general approach based on quadratic majorization. This class of algorithms has the desirable property that it computes maximum likelihood estimates by solving a sequence of least squares problems, which are generally much simpler. It also produces an algorithm which is globally convergent.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%